hyper-Poisson Model for Overdispersed and Underdispersed Count Data

V. D. Situmorang, S. Nurrohmah, Ida Fithriani
{"title":"hyper-Poisson Model for Overdispersed and Underdispersed Count Data","authors":"V. D. Situmorang, S. Nurrohmah, Ida Fithriani","doi":"10.34123/icdsos.v2023i1.344","DOIUrl":null,"url":null,"abstract":"The Poisson model is commonly used for modelling count data. However, it has a limitation, namely the equality between the mean and variance (equidispersion) of the data to be modeled. Unfortunately, overdispersion (variance greater than the mean) and underdispersion (variance smaller than the mean) are more often to be found in real cases. Therefore, different models need to be used to handle data with these cases. The hyper-Poisson model is one model that can be used to handle overdispersion or underdispersion cases flexibly. This paper describes the hyper-Poisson model and its application on overdispersed and underdispersed count data.","PeriodicalId":151043,"journal":{"name":"Proceedings of The International Conference on Data Science and Official Statistics","volume":" 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The International Conference on Data Science and Official Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34123/icdsos.v2023i1.344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Poisson model is commonly used for modelling count data. However, it has a limitation, namely the equality between the mean and variance (equidispersion) of the data to be modeled. Unfortunately, overdispersion (variance greater than the mean) and underdispersion (variance smaller than the mean) are more often to be found in real cases. Therefore, different models need to be used to handle data with these cases. The hyper-Poisson model is one model that can be used to handle overdispersion or underdispersion cases flexibly. This paper describes the hyper-Poisson model and its application on overdispersed and underdispersed count data.
超分散和欠分散计数数据的超泊松模型
泊松模型常用于建立计数数据模型。然而,它有一个局限性,即所建模数据的均值和方差(等离散性)必须相等。遗憾的是,在实际案例中,超分散(方差大于均值)和欠分散(方差小于均值)的情况更为常见。因此,需要使用不同的模型来处理这些情况的数据。超泊松模型就是一种可用于灵活处理过分散或欠分散情况的模型。本文介绍了超泊松模型及其在过分散和欠分散计数数据中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信