Selección del modelo óptimo de predicción de la relación de desempeño de una planta solar fotovoltaica. Un enfoque multicriterio basado en algoritmos de aprendizaje automático

C. A. Yajure Ramírez
{"title":"Selección del modelo óptimo de predicción de la relación de desempeño de una planta solar fotovoltaica. Un enfoque multicriterio basado en algoritmos de aprendizaje automático","authors":"C. A. Yajure Ramírez","doi":"10.22206/cyap.2023.v6i2.2935","DOIUrl":null,"url":null,"abstract":"La producción de energía eléctrica a partir de las plantas solares fotovoltaicas se ha intensificado en los últimos años con el fin de disminuir el uso de los combustibles fósiles. Sin embargo, este tipo de plantas no está exenta de sufrir pérdidas de energía, reduciendo en consecuencia su rendimiento. La Comisión Electrotécnica Internacional, a través de sus estándares, ha diseñado una serie de indicadores de desempeño clave para estas plantas, uno de los cuales es la relación de desempeño. El objetivo de esta investigación es presentar una metodología multicriterio para seleccionar el mejor modelo de clasificación para predecir la clase de la relación de desempeño de plantas solares fotovoltaicas. Se ilustra la metodología, utilizando los datos de una planta comercial ubicada en la zona central de Chile, considerando la técnica de análisis multicriterio TOPSIS, y los algoritmos de K vecinos más cercanos, máquinas de soporte vectorial, bosques aleatorios, y regresión logística, como alternativas del problema de decisión. Los criterios de decisión son las siguientes métricas: exactitud, precisión, f1-score, recall, y ROC-AUC. Como resultado se obtuvo que el mejor modelo correspondió al obtenido con regresión logística, con un puntaje del 100%, seguido del modelo de bosques aleatorios con 82,86%. Se recomienda incorporar nuevos modelos de clasificación a la metodología, y probarla con los datos de otra planta solar fotovoltaica.","PeriodicalId":190880,"journal":{"name":"Ciencia, Ingenierías y Aplicaciones","volume":" 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciencia, Ingenierías y Aplicaciones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22206/cyap.2023.v6i2.2935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

La producción de energía eléctrica a partir de las plantas solares fotovoltaicas se ha intensificado en los últimos años con el fin de disminuir el uso de los combustibles fósiles. Sin embargo, este tipo de plantas no está exenta de sufrir pérdidas de energía, reduciendo en consecuencia su rendimiento. La Comisión Electrotécnica Internacional, a través de sus estándares, ha diseñado una serie de indicadores de desempeño clave para estas plantas, uno de los cuales es la relación de desempeño. El objetivo de esta investigación es presentar una metodología multicriterio para seleccionar el mejor modelo de clasificación para predecir la clase de la relación de desempeño de plantas solares fotovoltaicas. Se ilustra la metodología, utilizando los datos de una planta comercial ubicada en la zona central de Chile, considerando la técnica de análisis multicriterio TOPSIS, y los algoritmos de K vecinos más cercanos, máquinas de soporte vectorial, bosques aleatorios, y regresión logística, como alternativas del problema de decisión. Los criterios de decisión son las siguientes métricas: exactitud, precisión, f1-score, recall, y ROC-AUC. Como resultado se obtuvo que el mejor modelo correspondió al obtenido con regresión logística, con un puntaje del 100%, seguido del modelo de bosques aleatorios con 82,86%. Se recomienda incorporar nuevos modelos de clasificación a la metodología, y probarla con los datos de otra planta solar fotovoltaica.
为太阳能光伏发电厂选择最佳性能比预测模型。基于机器学习算法的多标准方法。
近年来,为了减少化石燃料的使用,太阳能光伏发电站的发电量不断增加。然而,这类发电站也难免会出现能源损耗,从而降低其性能。国际电工委员会通过其标准为这类电站设计了一系列关键性能指标,性能比就是其中之一。本研究的目的是提出一种多标准方法,用于选择预测太阳能光伏电站性能比等级的最佳分类模型。该方法利用位于智利中部的一家商业电厂的数据进行说明,将 TOPSIS 多标准分析技术、K-近邻算法、支持向量机、随机森林和逻辑回归作为决策问题的备选方案。决策标准包括以下指标:准确度、精确度、F1 分数、召回率和 ROC-AUC。结果,逻辑回归模型得分最高,为 100%,其次是随机森林模型,得分率为 82.86%。建议将新的分类模型纳入该方法,并用另一个太阳能光伏发电厂的数据进行测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信