{"title":"Structurally Unstable Synchronization and Border-Collision Bifurcations in the Two-Coupled Izhikevich Neuron Model","authors":"Y. Miino, T. Ueta","doi":"10.1142/s0218127423300409","DOIUrl":null,"url":null,"abstract":"This study investigates a structurally unstable synchronization phenomenon observed in the two-coupled Izhikevich neuron model. As the result of varying the system parameter in the region of parameter space close to where the unstable synchronization is observed, we find significant changes in the stability of its periodic motion. We derive a discrete-time dynamical system that is equivalent to the original model and reveal that the unstable synchronization in the continuous-time dynamical system is equivalent to border-collision bifurcations in the corresponding discrete-time system. Furthermore, we propose an objective function that can be used to obtain the parameter set at which the border-collision bifurcation occurs. The proposed objective function is numerically differentiable and can be solved using Newton’s method. We numerically generate a bifurcation diagram in the parameter plane, including the border-collision bifurcation sets. In the diagram, the border-collision bifurcation sets show a novel bifurcation structure that resembles the “strike-slip fault” observed in geology. This structure implies that, before and after the border-collision bifurcation occurs, the stability of the periodic point discontinuously changes in some cases but maintains in other cases. In addition, we demonstrate that a border-collision bifurcation set successively branches at distinct points. This behavior results in a tree-like structure being observed in the border-collision bifurcation diagram; we refer to this structure as a border-collision bifurcation tree. We observe that a periodic point disappears at the border-collision bifurcation in the discrete-time dynamical system and is simultaneously replaced by another periodic point; this phenomenon corresponds to a change in the firing order in the continuous-time dynamical system.","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":" 29","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127423300409","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates a structurally unstable synchronization phenomenon observed in the two-coupled Izhikevich neuron model. As the result of varying the system parameter in the region of parameter space close to where the unstable synchronization is observed, we find significant changes in the stability of its periodic motion. We derive a discrete-time dynamical system that is equivalent to the original model and reveal that the unstable synchronization in the continuous-time dynamical system is equivalent to border-collision bifurcations in the corresponding discrete-time system. Furthermore, we propose an objective function that can be used to obtain the parameter set at which the border-collision bifurcation occurs. The proposed objective function is numerically differentiable and can be solved using Newton’s method. We numerically generate a bifurcation diagram in the parameter plane, including the border-collision bifurcation sets. In the diagram, the border-collision bifurcation sets show a novel bifurcation structure that resembles the “strike-slip fault” observed in geology. This structure implies that, before and after the border-collision bifurcation occurs, the stability of the periodic point discontinuously changes in some cases but maintains in other cases. In addition, we demonstrate that a border-collision bifurcation set successively branches at distinct points. This behavior results in a tree-like structure being observed in the border-collision bifurcation diagram; we refer to this structure as a border-collision bifurcation tree. We observe that a periodic point disappears at the border-collision bifurcation in the discrete-time dynamical system and is simultaneously replaced by another periodic point; this phenomenon corresponds to a change in the firing order in the continuous-time dynamical system.
期刊介绍:
The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering.
The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.