P. Phung-Van, P. T. Hùng, H. Nguyen-Gia, H. Nguyen-Xuan
{"title":"Free vibration analysis of functionally graded triply periodic minimal surface plates using a first order shear deformation theory and meshfree method","authors":"P. Phung-Van, P. T. Hùng, H. Nguyen-Gia, H. Nguyen-Xuan","doi":"10.55579/jaec.202374.441","DOIUrl":null,"url":null,"abstract":"This paper explores a free vibration analysis of functionally graded triply periodic minimal surface plates using a first order shear deformation theory in conjunction with moving Kriging meshfree method. The FG-TPMS plates are modeled the same as porous structures with three different patterns (Primitive, Gyroid, and wrapped package-graph) and six different volume distributions for each pattern. Employing a fitting method based on a two-phase piece-wise function, the mechanical properties of the FGTPMS plates are determined. The governing equations for the FG-TPMS plates are established using the virtual work principle and subsequently solved using the moving Kriging meshfree method. The study encompasses FG-TPMS square and circular plate, examining the natural frequency of the FG-TPMS plates with various length-to-thickness ratios, TPMS types, volume distributions, and boundary conditions.","PeriodicalId":33374,"journal":{"name":"Journal of Advanced Engineering and Computation","volume":" 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Engineering and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55579/jaec.202374.441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores a free vibration analysis of functionally graded triply periodic minimal surface plates using a first order shear deformation theory in conjunction with moving Kriging meshfree method. The FG-TPMS plates are modeled the same as porous structures with three different patterns (Primitive, Gyroid, and wrapped package-graph) and six different volume distributions for each pattern. Employing a fitting method based on a two-phase piece-wise function, the mechanical properties of the FGTPMS plates are determined. The governing equations for the FG-TPMS plates are established using the virtual work principle and subsequently solved using the moving Kriging meshfree method. The study encompasses FG-TPMS square and circular plate, examining the natural frequency of the FG-TPMS plates with various length-to-thickness ratios, TPMS types, volume distributions, and boundary conditions.