Symmetry, Multistability and Antimonotonicity of a Shinriki Oscillator with Dual Memristors

IF 1.9 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Yizi Cheng, Fuhong Min
{"title":"Symmetry, Multistability and Antimonotonicity of a Shinriki Oscillator with Dual Memristors","authors":"Yizi Cheng, Fuhong Min","doi":"10.1142/s0218127423501869","DOIUrl":null,"url":null,"abstract":"In this paper, a type of modified dual memristive Shinriki oscillator is constructed with a flux-controlled absolute-type memristor and a voltage-controlled generic memristor, and the proposed oscillator with abundant dynamical behaviors, including the multistability and antimonotonicity, is comprehensively studied through dynamical distribution graphs, bifurcation diagrams, Lyapunov exponents and phase portraits. It is found that the passive/active state of memristor, which means different characteristics in the [Formula: see text]–[Formula: see text] domain with positive and negative parameters of the elements, can affect the state of the oscillator. For example, if the memristor is active, the oscillator will change more frequently in the multistable region. Also, it is noted that, for inherent initial-related symmetry and circuit structures with duality, both phenomena have strong symmetric characteristics and opposite evolution trends modulated by values of corresponding components. Especially, the bubbles, which are symmetric about parameters with duality and own complex evolution laws, have rarely been explored in previous works. In addition, the memristive oscillator is modularized based on field programmable gate array (FPGA) technology, and the multiple coexisting attractors are captured, which verifies the accuracy of the numerical results.","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":" 6","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127423501869","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a type of modified dual memristive Shinriki oscillator is constructed with a flux-controlled absolute-type memristor and a voltage-controlled generic memristor, and the proposed oscillator with abundant dynamical behaviors, including the multistability and antimonotonicity, is comprehensively studied through dynamical distribution graphs, bifurcation diagrams, Lyapunov exponents and phase portraits. It is found that the passive/active state of memristor, which means different characteristics in the [Formula: see text]–[Formula: see text] domain with positive and negative parameters of the elements, can affect the state of the oscillator. For example, if the memristor is active, the oscillator will change more frequently in the multistable region. Also, it is noted that, for inherent initial-related symmetry and circuit structures with duality, both phenomena have strong symmetric characteristics and opposite evolution trends modulated by values of corresponding components. Especially, the bubbles, which are symmetric about parameters with duality and own complex evolution laws, have rarely been explored in previous works. In addition, the memristive oscillator is modularized based on field programmable gate array (FPGA) technology, and the multiple coexisting attractors are captured, which verifies the accuracy of the numerical results.
带双 Memristors 的神力振荡器的对称性、多稳定性和反谐调性
本文利用通量控制绝对型忆阻器和电压控制通用型忆阻器构建了一种改进型双忆阻器信立基振荡器,并通过动力学分布图、分岔图、李亚普诺夫指数和相位肖像等方法对所提出的具有多稳态性和反单调性等丰富动力学行为的振荡器进行了综合研究。研究发现,忆阻器的被动/主动状态,即元素参数正负在[公式:见正文]-[公式:见正文]域的不同特性,会影响振荡器的状态。例如,如果忆阻器处于激活状态,振荡器在多稳态区域的变化会更频繁。此外,我们还注意到,对于固有的与初始相关的对称性和具有二重性的电路结构,这两种现象都具有很强的对称性特征和相反的演变趋势,并受相应元件值的调制。特别是对具有二重性的参数对称的气泡和自身复杂的演化规律,以往的研究很少对其进行探讨。此外,基于现场可编程门阵列(FPGA)技术对忆苦思甜振荡器进行了模块化处理,捕捉到了多个共存吸引子,验证了数值结果的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Bifurcation and Chaos
International Journal of Bifurcation and Chaos 数学-数学跨学科应用
CiteScore
4.10
自引率
13.60%
发文量
237
审稿时长
2-4 weeks
期刊介绍: The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering. The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信