PTIMIZATION AND CHARACTERIZATION OF USED COOKING OIL FOR BIODIESEL PRODUCTION USING RESPONSE SURFACE METHODOLOGY

Khadijah Aminu Umar, Ahmad Akanbi Adedo, A. Muhammad, Ahmad Sa'eed, Abdulladif Muhammad, Abdulhakeem Abdullateef, Ibrahim Auwal Gama, Husseini Tijani
{"title":"PTIMIZATION AND CHARACTERIZATION OF USED COOKING OIL FOR BIODIESEL PRODUCTION USING RESPONSE SURFACE METHODOLOGY","authors":"Khadijah Aminu Umar, Ahmad Akanbi Adedo, A. Muhammad, Ahmad Sa'eed, Abdulladif Muhammad, Abdulhakeem Abdullateef, Ibrahim Auwal Gama, Husseini Tijani","doi":"10.33003/fjs-2023-0706-2081","DOIUrl":null,"url":null,"abstract":"This study focuses on optimizing and characterizing alkali-catalyzed biodiesel production from used cooking oil. Transesterification using potassium hydroxide (KOH) and methanol, followed by solvent-solvent extraction, yielded biodiesel. Physicochemical analysis of the used cooking oil revealed an acid value of 29 mgNaOH/g, free fatty acid (FFA) value of 14.5, and density of 0.91 g/cm3. The high FFA content suggests the use of a heterogeneous catalyst. Optimization parameters included alcohol-to-oil ratio, catalyst concentration, reaction temperature, and time, employing Response Surface Methodology (RSM) based on Central Composite Design (CCD). Optimal conditions for biodiesel production were determined at a reaction temperature of 60°C, a reaction time of 60 minutes, 0.3g KOH catalyst concentration, and a 3:20 methanol-to-oil ratio, predicting a 100% yield. Physiochemical properties of the produced biodiesel indicated specific gravity and pH values of 0.891 and 7.60, respectively. Biodiesel blends (B100, B80, and B20) exhibited specific gravity and pH values of 0.891, 0.842, and 0.839, and 7.60, 7.81, and 5.5, respectively. Comparative analysis with diesel suggests the biodiesel's suitability for standalone or blended use in diesel engines. Characterization involved physicochemical analysis, Fourier Transform Infrared Spectroscopy (FTIR), and Thin Layer Chromatography (TLC). Overall, the optimized process presented a viable and efficient approach to producing biodiesel from used cooking oil with favourable fuel properties","PeriodicalId":282447,"journal":{"name":"FUDMA JOURNAL OF SCIENCES","volume":" 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUDMA JOURNAL OF SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33003/fjs-2023-0706-2081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on optimizing and characterizing alkali-catalyzed biodiesel production from used cooking oil. Transesterification using potassium hydroxide (KOH) and methanol, followed by solvent-solvent extraction, yielded biodiesel. Physicochemical analysis of the used cooking oil revealed an acid value of 29 mgNaOH/g, free fatty acid (FFA) value of 14.5, and density of 0.91 g/cm3. The high FFA content suggests the use of a heterogeneous catalyst. Optimization parameters included alcohol-to-oil ratio, catalyst concentration, reaction temperature, and time, employing Response Surface Methodology (RSM) based on Central Composite Design (CCD). Optimal conditions for biodiesel production were determined at a reaction temperature of 60°C, a reaction time of 60 minutes, 0.3g KOH catalyst concentration, and a 3:20 methanol-to-oil ratio, predicting a 100% yield. Physiochemical properties of the produced biodiesel indicated specific gravity and pH values of 0.891 and 7.60, respectively. Biodiesel blends (B100, B80, and B20) exhibited specific gravity and pH values of 0.891, 0.842, and 0.839, and 7.60, 7.81, and 5.5, respectively. Comparative analysis with diesel suggests the biodiesel's suitability for standalone or blended use in diesel engines. Characterization involved physicochemical analysis, Fourier Transform Infrared Spectroscopy (FTIR), and Thin Layer Chromatography (TLC). Overall, the optimized process presented a viable and efficient approach to producing biodiesel from used cooking oil with favourable fuel properties
利用响应面方法优化和表征用于生物柴油生产的废食用油
本研究的重点是优化和表征碱催化废食用油生产生物柴油的过程。使用氢氧化钾(KOH)和甲醇进行酯交换反应,然后进行溶剂萃取,得到了生物柴油。废食用油的理化分析表明,其酸值为 29 mgNaOH/g,游离脂肪酸 (FFA) 值为 14.5,密度为 0.91 g/cm3。高游离脂肪酸含量表明需要使用异相催化剂。优化参数包括醇油比、催化剂浓度、反应温度和时间,采用了基于中央复合设计(CCD)的响应面方法(RSM)。生物柴油生产的最佳条件确定为:反应温度 60°C、反应时间 60 分钟、催化剂浓度 0.3g KOH、甲醇与油的比例为 3:20,预测产率为 100%。所生产生物柴油的理化性质表明,其比重和 pH 值分别为 0.891 和 7.60。生物柴油混合物(B100、B80 和 B20)的比重和 pH 值分别为 0.891、0.842 和 0.839,以及 7.60、7.81 和 5.5。与柴油的比较分析表明,生物柴油适合单独或混合使用于柴油发动机。表征包括理化分析、傅立叶变换红外光谱法(FTIR)和薄层色谱法(TLC)。总之,优化后的工艺是利用废食用油生产生物柴油的一种可行、高效的方法,具有良好的燃料特性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信