{"title":"Ultra-Chaos in the Motion of Walking Droplet","authors":"Yu Yang, Shijie Qin, Shijun Liao","doi":"10.1142/s0218127423501912","DOIUrl":null,"url":null,"abstract":"A liquid bath vibrating vertically can lead to the emergence of a self-propelled walking droplet on its free surface, which can exhibit chaotic motion. It is well-known that trajectories of a chaotic system are sensitive to its initial condition, known as the “butterfly-effect”, while its statistics normally remain stable to small disturbances: this type of chaos is called “normal-chaos”. However, a concept called “ultra-chaos” has been recently introduced, whose statistical features are unstable, i.e. extremely sensitive to small disturbances. Up to now, a few examples of ultra-chaos have been reported. In this paper, the influence of tiny disturbances on the motion of walking droplet is investigated. It is found that both normal-chaos and ultra-chaos exist in the motion of the walking droplet. Different from the normal-chaotic motion, even the statistical properties of the droplet’s ultra-chaotic motion are sensitive to tiny disturbances. Therefore, this illustrates once again that ultra-chaos indeed exists widely and represents a higher disorder compared with normal-chaos. The ultra-chaos as a new concept can widen our knowledge about chaos and provide us with a new point of view to study chaotic properties. It should be emphasized that, for an ultra-chaos, it is impossible to repeat any results of its physical experiments or numerical simulations even in the meaning of statistics! Unfortunately, reproducibility is a corner stone of modern science. Thus, the paradigm of modern scientific research might be invalid for an ultra-chaotic system.","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":" 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127423501912","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
A liquid bath vibrating vertically can lead to the emergence of a self-propelled walking droplet on its free surface, which can exhibit chaotic motion. It is well-known that trajectories of a chaotic system are sensitive to its initial condition, known as the “butterfly-effect”, while its statistics normally remain stable to small disturbances: this type of chaos is called “normal-chaos”. However, a concept called “ultra-chaos” has been recently introduced, whose statistical features are unstable, i.e. extremely sensitive to small disturbances. Up to now, a few examples of ultra-chaos have been reported. In this paper, the influence of tiny disturbances on the motion of walking droplet is investigated. It is found that both normal-chaos and ultra-chaos exist in the motion of the walking droplet. Different from the normal-chaotic motion, even the statistical properties of the droplet’s ultra-chaotic motion are sensitive to tiny disturbances. Therefore, this illustrates once again that ultra-chaos indeed exists widely and represents a higher disorder compared with normal-chaos. The ultra-chaos as a new concept can widen our knowledge about chaos and provide us with a new point of view to study chaotic properties. It should be emphasized that, for an ultra-chaos, it is impossible to repeat any results of its physical experiments or numerical simulations even in the meaning of statistics! Unfortunately, reproducibility is a corner stone of modern science. Thus, the paradigm of modern scientific research might be invalid for an ultra-chaotic system.
期刊介绍:
The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering.
The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.