DYNAMIC THRESHOLDING GA-BASED ECG FEATURE SELECTION IN CARDIOVASCULAR DISEASE DIAGNOSIS

Hasanain F. Hashim, Meriam Jemel, Nadia Ben Azzouna
{"title":"DYNAMIC THRESHOLDING GA-BASED ECG FEATURE SELECTION IN CARDIOVASCULAR DISEASE DIAGNOSIS","authors":"Hasanain F. Hashim, Meriam Jemel, Nadia Ben Azzouna","doi":"10.25195/ijci.v49i2.456","DOIUrl":null,"url":null,"abstract":"Electrocardiogram (ECG) data are usually used to diagnose cardiovascular disease (CVD) with the help of a revolutionary algorithm. Feature selection is a crucial step in the development of accurate and reliable diagnostic models for CVDs. This research introduces the dynamic threshold genetic algorithm (DTGA) algorithm, a type of genetic algorithm that is used for optimization problems and discusses its use in the context of feature selection. This research reveals the success of DTGA in selecting relevant ECG features that ultimately enhance accuracy and efficiency in the diagnosis of CVD. This work also proves the benefits of employing DTGA in clinical practice, including a reduction in the amount of time spent diagnosing patients and an increase in the precision with which individuals who are at risk of CVD can be identified.","PeriodicalId":53384,"journal":{"name":"Iraqi Journal for Computers and Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal for Computers and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25195/ijci.v49i2.456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocardiogram (ECG) data are usually used to diagnose cardiovascular disease (CVD) with the help of a revolutionary algorithm. Feature selection is a crucial step in the development of accurate and reliable diagnostic models for CVDs. This research introduces the dynamic threshold genetic algorithm (DTGA) algorithm, a type of genetic algorithm that is used for optimization problems and discusses its use in the context of feature selection. This research reveals the success of DTGA in selecting relevant ECG features that ultimately enhance accuracy and efficiency in the diagnosis of CVD. This work also proves the benefits of employing DTGA in clinical practice, including a reduction in the amount of time spent diagnosing patients and an increase in the precision with which individuals who are at risk of CVD can be identified.
心血管疾病诊断中基于动态阈值 GA 的心电图特征选择
心电图(ECG)数据通常在革命性算法的帮助下用于诊断心血管疾病(CVD)。特征选择是开发准确可靠的心血管疾病诊断模型的关键步骤。本研究介绍了动态阈值遗传算法(DTGA)算法,这是一种用于优化问题的遗传算法,并讨论了其在特征选择中的应用。这项研究揭示了 DTGA 在选择相关心电图特征方面取得的成功,最终提高了心血管疾病诊断的准确性和效率。这项研究还证明了在临床实践中使用 DTGA 的好处,包括减少诊断病人所花费的时间,提高识别心血管疾病高危人群的精确度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信