Multipartite quantum key agreement against d-dimensional collective-dephasing noise

IF 1.5 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Wan-Li Hong, Chen-Ming Bai, Su-juan Zhang, Lu Liu
{"title":"Multipartite quantum key agreement against d-dimensional collective-dephasing noise","authors":"Wan-Li Hong, Chen-Ming Bai, Su-juan Zhang, Lu Liu","doi":"10.1142/s0217732323501791","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a novel model for collective-dephasing noise in [Formula: see text]-dimensional space. After that, we construct a multi-particle entangled state to resist the given collective-dephasing noise. Based on the measurement laws of multi-particle entangled state under two different bases, we propose a multipartite quantum key agreement protocol. In this protocol, multiple participants would obtain [Formula: see text]-dimensional secret key even if the quantum channel is influenced by collective-dephasing noise. The security analysis indicates that this protocol can resist both dishonest participant attack and the outsider attacks which include intercept-resend attack and entangle-measure attack. By comparing with the existing QKA protocols, it is clear that our protocol has greater universality from the perspective of dimensionality and number of participants.","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":" 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217732323501791","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a novel model for collective-dephasing noise in [Formula: see text]-dimensional space. After that, we construct a multi-particle entangled state to resist the given collective-dephasing noise. Based on the measurement laws of multi-particle entangled state under two different bases, we propose a multipartite quantum key agreement protocol. In this protocol, multiple participants would obtain [Formula: see text]-dimensional secret key even if the quantum channel is influenced by collective-dephasing noise. The security analysis indicates that this protocol can resist both dishonest participant attack and the outsider attacks which include intercept-resend attack and entangle-measure attack. By comparing with the existing QKA protocols, it is clear that our protocol has greater universality from the perspective of dimensionality and number of participants.
对抗 d 维集体相干噪声的多方量子密钥协议
本文介绍了[公式:见正文]维空间中集体相干噪声的新模型。然后,我们构建了一个多粒子纠缠态来抵抗给定的集体-相干噪声。根据多粒子纠缠态在两种不同基础下的测量规律,我们提出了一种多方量子密钥协议。在该协议中,即使量子信道受到集体相消噪声的影响,多个参与者也能获得[公式:见正文]维密匙。安全性分析表明,该协议既能抵御不诚实参与者的攻击,也能抵御外部攻击,包括拦截-发送攻击和纠缠-测量攻击。与现有的 QKA 协议相比,从维度和参与人数的角度来看,我们的协议显然具有更大的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Modern Physics Letters A
Modern Physics Letters A 物理-物理:核物理
CiteScore
3.10
自引率
7.10%
发文量
186
审稿时长
3 months
期刊介绍: This letters journal, launched in 1986, consists of research papers covering current research developments in Gravitation, Cosmology, Astrophysics, Nuclear Physics, Particles and Fields, Accelerator physics, and Quantum Information. A Brief Review section has also been initiated with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信