Dynamics of a Reaction–Diffusion–Advection System with Nonlinear Boundary Conditions

IF 1.9 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Chenyuan Tian, Shangjiang Guo
{"title":"Dynamics of a Reaction–Diffusion–Advection System with Nonlinear Boundary Conditions","authors":"Chenyuan Tian, Shangjiang Guo","doi":"10.1142/s0218127423501936","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a single-species reaction–diffusion–advection population model with nonlinear boundary condition in heterogenous space. We not only investigate the existence, nonexistence and stability of positive steady-state solutions through a linear elliptic eigenvalue problem by means of variational approach, but also verify the existence of steady-state bifurcations at zero solution through Crandall and Robinowitz bifurcation theory and discuss the stability of bifurcations, which can lead to Allee effect when the bifurcation is subcritical.","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127423501936","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a single-species reaction–diffusion–advection population model with nonlinear boundary condition in heterogenous space. We not only investigate the existence, nonexistence and stability of positive steady-state solutions through a linear elliptic eigenvalue problem by means of variational approach, but also verify the existence of steady-state bifurcations at zero solution through Crandall and Robinowitz bifurcation theory and discuss the stability of bifurcations, which can lead to Allee effect when the bifurcation is subcritical.
具有非线性边界条件的反应-扩散-平流系统的动力学特性
本文考虑了异质空间中具有非线性边界条件的单物种反应-扩散-对流种群模型。我们不仅通过线性椭圆特征值问题,利用变分法研究了正稳态解的存在、不存在和稳定性,还通过 Crandall 和 Robinowitz 分岔理论验证了零解处稳态分岔的存在性,并讨论了分岔的稳定性,当分岔为亚临界时,可能会导致阿利效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Bifurcation and Chaos
International Journal of Bifurcation and Chaos 数学-数学跨学科应用
CiteScore
4.10
自引率
13.60%
发文量
237
审稿时长
2-4 weeks
期刊介绍: The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering. The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信