{"title":"Minimal generating sets in groups of $p$-automata","authors":"Y. V. Lavrenyuk, A.S. Oliynyk","doi":"10.15330/cmp.15.2.608-613","DOIUrl":null,"url":null,"abstract":"For an arbitrary odd prime $p$, we consider groups of all $p$-automata and all finite $p$-automata. We construct minimal generating sets in both the groups of all $p$-automata and its subgroup of finite $p$-automata. The key ingredient of the proof is the lifting technique, which allows the construction of a minimal generating set in a group provided a minimal generating set in its abelian quotient is given. To find the required quotient, the elements of the groups of $p$-automata and finite $p$-automata are presented in terms of tableaux introduced by L. Kaloujnine. Using this presentation, a natural homomorphism on the additive group of all infinite sequences over the field $\\mathbb{Z}_p$ is defined and examined.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.2.608-613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For an arbitrary odd prime $p$, we consider groups of all $p$-automata and all finite $p$-automata. We construct minimal generating sets in both the groups of all $p$-automata and its subgroup of finite $p$-automata. The key ingredient of the proof is the lifting technique, which allows the construction of a minimal generating set in a group provided a minimal generating set in its abelian quotient is given. To find the required quotient, the elements of the groups of $p$-automata and finite $p$-automata are presented in terms of tableaux introduced by L. Kaloujnine. Using this presentation, a natural homomorphism on the additive group of all infinite sequences over the field $\mathbb{Z}_p$ is defined and examined.