Minimal generating sets in groups of $p$-automata

IF 1 Q1 MATHEMATICS
Y. V. Lavrenyuk, A.S. Oliynyk
{"title":"Minimal generating sets in groups of $p$-automata","authors":"Y. V. Lavrenyuk, A.S. Oliynyk","doi":"10.15330/cmp.15.2.608-613","DOIUrl":null,"url":null,"abstract":"For an arbitrary odd prime $p$, we consider groups of all $p$-automata and all finite $p$-automata. We construct minimal generating sets in both the groups of all $p$-automata and its subgroup of finite $p$-automata. The key ingredient of the proof is the lifting technique, which allows the construction of a minimal generating set in a group provided a minimal generating set in its abelian quotient is given. To find the required quotient, the elements of the groups of $p$-automata and finite $p$-automata are presented in terms of tableaux introduced by L. Kaloujnine. Using this presentation, a natural homomorphism on the additive group of all infinite sequences over the field $\\mathbb{Z}_p$ is defined and examined.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.2.608-613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For an arbitrary odd prime $p$, we consider groups of all $p$-automata and all finite $p$-automata. We construct minimal generating sets in both the groups of all $p$-automata and its subgroup of finite $p$-automata. The key ingredient of the proof is the lifting technique, which allows the construction of a minimal generating set in a group provided a minimal generating set in its abelian quotient is given. To find the required quotient, the elements of the groups of $p$-automata and finite $p$-automata are presented in terms of tableaux introduced by L. Kaloujnine. Using this presentation, a natural homomorphism on the additive group of all infinite sequences over the field $\mathbb{Z}_p$ is defined and examined.
p$自变量组中的最小生成集
对于任意奇素数 $p$,我们考虑所有 $p$ 自形群和所有有限 $p$ 自形群。我们在所有 $p$ 自偶数群及其有限 $p$ 自偶数子群中都构建了最小生成集。证明的关键要素是提升技术,它允许在一个群中构建一个最小的生成集,前提是给出其无比值商中的最小生成集。为了找到所需的商,可以用 L. Kaloujnine 引入的表法来表示 $p$-automata 和有限 $p$-automata 群的元素。利用这一表象,定义并研究了关于域 $\mathbb{Z}_p$ 上所有无限序列的加法群的自然同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信