Evaluation of Coulomb integrals with various energy operators to estimate the correlation energy in electronic structure calculations for molecules

S. Kristyán
{"title":"Evaluation of Coulomb integrals with various energy operators to estimate the correlation energy in electronic structure calculations for molecules","authors":"S. Kristyán","doi":"10.5155/eurjchem.14.4.486-493.2480","DOIUrl":null,"url":null,"abstract":"Using energy operators RC1-nRD1-m, RC1-nr12-m, and r12-nr13-m with small (n, m) values is fundamental in electronic structure calculations. Analytical integrations of the cases (n, m) = (1, 0) and (0, 1) are based on the Laplace transformation with the integrand exp(-a2t2), the other cases are based on the Laplace transformation with the integrand exp(-a2t) and the two-dimensional version of the Boys function. These analytic expressions, with Gaussian function integrands, are useful for manipulation with higher moments of interelectronic distances, for example, in correlation calculations. The equations derived help to evaluate the one-, two-, and three-electron Coulomb integrals, òρ(1)RC1-nRD1-mdr1, òρ(1)ρ(2)RC1-nr12-mdr1dr2, and òρ(1)ρ(2)ρ(3)r12-nr13-mdr1dr2dr3, wherein ρ(i) is the one-electron density describing the electron clouds in molecules, solids, or any media or ensemble of materials. Analytical solutions to integrals are more useful than numeric solutions; however, the former is not available in many cases. We evaluate these integrals numerically, even more so, the òf(ρ(1))dr1 to òf(ρ(1),ρ(2),ρ(3))dr1dr2dr3 with the analytical function f. For this task, the commonly used density functional theory numerical integration scheme has been elaborated to 6 and 9 dimensions via Descartes product. More importantly, this numerical integration scheme works not only for Gaussian type but also for Slaterian types. Analogy is commented on in terms of the powerful empirical correction between quantum potential energy correction and the empirically corrected Newton’s universal law of gravity in the explanation of dark matter and energy, as well as its relation to Hartree-Fock and Kohn-Sham formalisms.","PeriodicalId":11778,"journal":{"name":"European Journal of Chemistry","volume":"124 39","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5155/eurjchem.14.4.486-493.2480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using energy operators RC1-nRD1-m, RC1-nr12-m, and r12-nr13-m with small (n, m) values is fundamental in electronic structure calculations. Analytical integrations of the cases (n, m) = (1, 0) and (0, 1) are based on the Laplace transformation with the integrand exp(-a2t2), the other cases are based on the Laplace transformation with the integrand exp(-a2t) and the two-dimensional version of the Boys function. These analytic expressions, with Gaussian function integrands, are useful for manipulation with higher moments of interelectronic distances, for example, in correlation calculations. The equations derived help to evaluate the one-, two-, and three-electron Coulomb integrals, òρ(1)RC1-nRD1-mdr1, òρ(1)ρ(2)RC1-nr12-mdr1dr2, and òρ(1)ρ(2)ρ(3)r12-nr13-mdr1dr2dr3, wherein ρ(i) is the one-electron density describing the electron clouds in molecules, solids, or any media or ensemble of materials. Analytical solutions to integrals are more useful than numeric solutions; however, the former is not available in many cases. We evaluate these integrals numerically, even more so, the òf(ρ(1))dr1 to òf(ρ(1),ρ(2),ρ(3))dr1dr2dr3 with the analytical function f. For this task, the commonly used density functional theory numerical integration scheme has been elaborated to 6 and 9 dimensions via Descartes product. More importantly, this numerical integration scheme works not only for Gaussian type but also for Slaterian types. Analogy is commented on in terms of the powerful empirical correction between quantum potential energy correction and the empirically corrected Newton’s universal law of gravity in the explanation of dark matter and energy, as well as its relation to Hartree-Fock and Kohn-Sham formalisms.
用各种能量算子评估库仑积分,以估算分子电子结构计算中的相关能
使用能量算子 RC1-nRD1-m、RC1-nr12-m 和 r12-nr13-m 的小 (n, m) 值是电子结构计算的基础。(n, m) = (1, 0) 和 (0, 1) 两种情况的分析积分是基于积分为 exp(-a2t2) 的拉普拉斯变换,其他情况则是基于积分为 exp(-a2t) 的拉普拉斯变换和博伊斯函数的二维版本。这些带有高斯函数积分的解析表达式有助于处理电子间距离的高矩数,例如在相关计算中。推导出的方程有助于评估一、二和三电子库仑积分,即 òρ(1)RC1-nRD1-mdr1, òρ(1)ρ(2)RC1-nr12-mdr1dr2, òρ(1)ρ(2)ρ(3)r12-nr13-mdr1dr2dr3, 其中 ρ(i) 是描述分子、固体或任何介质或材料组合中电子云的单电子密度。积分的解析解比数值解更有用,但前者在很多情况下并不适用。为此,我们通过笛卡尔积将常用的密度泛函理论数值积分方案扩展到 6 维和 9 维。更重要的是,这种数值积分方案不仅适用于高斯类型,也适用于斯莱特类型。从量子势能修正和经验修正的牛顿万有引力定律在解释暗物质和能量方面的强大经验修正,以及它与哈特里-福克和科恩-沙姆形式主义的关系等方面进行了类比评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信