Online Symbolic Music Alignment With Offline Reinforcement Learning

Silvan David Peter
{"title":"Online Symbolic Music Alignment With Offline Reinforcement Learning","authors":"Silvan David Peter","doi":"10.5281/zenodo.10265367","DOIUrl":null,"url":null,"abstract":"Symbolic Music Alignment is the process of matching performed MIDI notes to corresponding score notes. In this paper, we introduce a reinforcement learning (RL)-based online symbolic music alignment technique. The RL agent - an attention-based neural network - iteratively estimates the current score position from local score and performance contexts. For this symbolic alignment task, environment states can be sampled exhaustively and the reward is dense, rendering a formulation as a simplified offline RL problem straightforward. We evaluate the trained agent in three ways. First, in its capacity to identify correct score positions for sampled test contexts; second, as the core technique of a complete algorithm for symbolic online note-wise alignment; and finally, as a real-time symbolic score follower. We further investigate the pitch-based score and performance representations used as the agent's inputs. To this end, we develop a second model, a two-step Dynamic Time Warping (DTW)-based offline alignment algorithm leveraging the same input representation. The proposed model outperforms a state-of-the-art reference model of offline symbolic music alignment.","PeriodicalId":309903,"journal":{"name":"International Society for Music Information Retrieval Conference","volume":"113 28","pages":"634-641"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Society for Music Information Retrieval Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/zenodo.10265367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Symbolic Music Alignment is the process of matching performed MIDI notes to corresponding score notes. In this paper, we introduce a reinforcement learning (RL)-based online symbolic music alignment technique. The RL agent - an attention-based neural network - iteratively estimates the current score position from local score and performance contexts. For this symbolic alignment task, environment states can be sampled exhaustively and the reward is dense, rendering a formulation as a simplified offline RL problem straightforward. We evaluate the trained agent in three ways. First, in its capacity to identify correct score positions for sampled test contexts; second, as the core technique of a complete algorithm for symbolic online note-wise alignment; and finally, as a real-time symbolic score follower. We further investigate the pitch-based score and performance representations used as the agent's inputs. To this end, we develop a second model, a two-step Dynamic Time Warping (DTW)-based offline alignment algorithm leveraging the same input representation. The proposed model outperforms a state-of-the-art reference model of offline symbolic music alignment.
利用离线强化学习进行在线符号音乐配准
符号音乐配准是将演奏的 MIDI 音符与相应的乐谱音符进行匹配的过程。本文介绍了一种基于强化学习(RL)的在线符号音乐配准技术。强化学习代理--一个基于注意力的神经网络--根据本地乐谱和表演背景迭代估计当前乐谱位置。对于这项符号配准任务,环境状态可以被详尽采样,奖励也很密集,因此可以直接将其表述为一个简化的离线 RL 问题。我们从三个方面对训练有素的代理进行评估。首先,评估其在采样测试环境中识别正确乐谱位置的能力;其次,评估其作为符号在线音符配准完整算法的核心技术的能力;最后,评估其作为实时符号乐谱跟随器的能力。我们进一步研究了作为代理输入的基于音高的乐谱和演奏表征。为此,我们开发了第二个模型,即基于动态时间扭曲(DTW)的两步离线配准算法,利用相同的输入表示。所提出的模型优于最先进的离线符号音乐配准参考模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信