{"title":"EVALUATION OF DUST EMISSION RATE FROM LANDFILL MINING ACTIVITIES","authors":"Mohammed Zari, Richard Smith, Rebecca Ferrari","doi":"10.31025/2611-4135/2023.18328","DOIUrl":null,"url":null,"abstract":"Mining operations are one of the most significant sources of particulate emissions in the atmosphere. Landfill mining (LFM) process activities, including excavation, screening, shredding, and equipment handling, have the potential to emit particulate matter into the environment as short-term episodic emissions during operational periods. Previous investigations show that LFM activities can potentially cause human health and environmental impacts through exposure of these emissions. This paper evaluates the dust emission rate of such activities to understand factors responsible for higher emissions rate and determine where any pressure points exist in order to mitigate risk. Nine empirical formulas were adopted from surface mining activities, including point, line, and area sources of activity. Parameters identified in the equations were adjusted to LFM application conditions. From emission results, it is observed that point source activities were the major sources of emission. The study area was divided into multiple phases and one phase cumulative for the maximum/average/minimum point sources emissions over the lifetime of the landfill mining operation calculated in this study are approximately 5.04 tonnes (t) / 3.23 (t) / 1.61 (t), respectively. However, the one phase cumulative for the maximum/average/minimum line sources emissions over the lifetime of the landfill mining operation are approximately 100.8 (kg/m) / 40.32 (kg/m) / 20.16 (kg/m), respectively. Mitigation measures to control high emission rate of LFM related activity, such as utilising tankers or bowsers to spray water around the LFM area, to control airborne emissions, should be considered. The results of this research are expected to inform air dispersion modelling for environmental impact assessment studies of air pollution.","PeriodicalId":44191,"journal":{"name":"Detritus","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Detritus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31025/2611-4135/2023.18328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mining operations are one of the most significant sources of particulate emissions in the atmosphere. Landfill mining (LFM) process activities, including excavation, screening, shredding, and equipment handling, have the potential to emit particulate matter into the environment as short-term episodic emissions during operational periods. Previous investigations show that LFM activities can potentially cause human health and environmental impacts through exposure of these emissions. This paper evaluates the dust emission rate of such activities to understand factors responsible for higher emissions rate and determine where any pressure points exist in order to mitigate risk. Nine empirical formulas were adopted from surface mining activities, including point, line, and area sources of activity. Parameters identified in the equations were adjusted to LFM application conditions. From emission results, it is observed that point source activities were the major sources of emission. The study area was divided into multiple phases and one phase cumulative for the maximum/average/minimum point sources emissions over the lifetime of the landfill mining operation calculated in this study are approximately 5.04 tonnes (t) / 3.23 (t) / 1.61 (t), respectively. However, the one phase cumulative for the maximum/average/minimum line sources emissions over the lifetime of the landfill mining operation are approximately 100.8 (kg/m) / 40.32 (kg/m) / 20.16 (kg/m), respectively. Mitigation measures to control high emission rate of LFM related activity, such as utilising tankers or bowsers to spray water around the LFM area, to control airborne emissions, should be considered. The results of this research are expected to inform air dispersion modelling for environmental impact assessment studies of air pollution.