A WHEELCHAIR SITTING POSTURE DETECTION SYSTEM USING PRESSURE SENSORS

IF 0.6 Q3 ENGINEERING, MULTIDISCIPLINARY
Muhammad Annuar Alhadi Mohamad Yusoff, Nur Liyana Azmi, N. Nordin
{"title":"A WHEELCHAIR SITTING POSTURE DETECTION SYSTEM USING PRESSURE SENSORS","authors":"Muhammad Annuar Alhadi Mohamad Yusoff, Nur Liyana Azmi, N. Nordin","doi":"10.31436/iiumej.v25i1.2820","DOIUrl":null,"url":null,"abstract":"The usage of machine learning in the healthcare system, especially in monitoring those who are using a wheelchair for their mobility has also helped to improve their quality of life in preventing any serious life-time risk, such as the development of pressure ulcers due to the prolonged sitting on the wheelchair. To date, the amount of research on the sitting posture detection on wheelchairs is very small. Thus, this study aimed to develop a sitting posture detection system that predominantly focuses on monitoring and detecting the sitting posture of a wheelchair user by using pressure sensors to avoid any possible discomfort and musculoskeletal disease resulting from prolonged sitting on the wheelchair. Five healthy subjects participated in this research. Five typical sitting postures by the wheelchair user, including the posture that applies a force on the backrest plate, were identified and classified. There were four pressure sensors attached to the seat plate of the wheelchair and two pressure sensors attached to the back rest. Three classification algorithms based on the supervised learning of machine learning, such as support vector machine (SVM), random forest (RF), and decision tree (DT) were used to classify the postures which produced an accuracy of 95.44%, 98.72%, and 98.80%, respectively. All the classification algorithms were evaluated by using the k-fold cross validation method. A graphical-user interface (GUI) based application was developed using the algorithm with the highest accuracy, DT classifier, to illustrate the result of the posture classification to the wheelchair user for any posture correction to be made in case of improper sitting posture detected. ABSTRAK: Penggunaan pembelajaran mesin dalam sistem penjagaan kesihatan terutama dalam mengawasi pergerakan pengguna kerusi roda dapat membantu meningkatkan kualiti hidup bagi mengelak sebarang risiko serius seperti ulser disebabkan tekanan duduk terlalu lama di kerusi roda. Sehingga kini, kajian tentang pengesanan postur ketika duduk di kerusi roda adalah sangat kurang. Oleh itu, kajian ini bertujuan bagi membina sistem pengesan postur khususnya bagi mengawasi dan mengesan postur duduk pengguna kerusi roda dengan menggunakan pengesan tekanan bagi mengelak sebarang kemungkinan ketidakselesaan dan penyakit otot akibat duduk terlalu lama. Lima pengguna kerusi roda yang sihat telah dijadikan subjek bagi kajian ini. Terdapat lima postur duduk oleh pengguna kerusi roda termasuk postur yang memberikan tekanan pada bahagian belakang telah di kenalpasti dan dikelaskan. Terdapat empat pengesan tekanan dilekatkan pada bahagian tempat duduk kerusi roda dan dua pengesan tekanan dilekatkan pada bahagian belakang. Tiga algoritma pengelasan berdasarkan pembelajaran terarah melalui pembelajaran mesin seperti Sokongan Vektor Mesin (SVM), Hutan Rawak (RF) dan Pokok Keputusan (DT) telah digunakan bagi pengelasan postur di mana masing-masing memberikan ketepatan 95.44%, 98.72% dan 98.80%. Semua algoritma pengelasan telah dinilai menggunakan kaedah k-lipatan pengesahan bersilang. Sebuah aplikasi grafik antara muka  (GUI) telah dibina menggunakan algoritma dengan ketepatan paling tinggi, iaitu pengelasan DT bagi memaparkan keputusan pengelasan postur untuk pengguna kerusi roda bagi membantu pembetulan postur jika postur salah dikesan.","PeriodicalId":13439,"journal":{"name":"IIUM Engineering Journal","volume":"11 22","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIUM Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31436/iiumej.v25i1.2820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The usage of machine learning in the healthcare system, especially in monitoring those who are using a wheelchair for their mobility has also helped to improve their quality of life in preventing any serious life-time risk, such as the development of pressure ulcers due to the prolonged sitting on the wheelchair. To date, the amount of research on the sitting posture detection on wheelchairs is very small. Thus, this study aimed to develop a sitting posture detection system that predominantly focuses on monitoring and detecting the sitting posture of a wheelchair user by using pressure sensors to avoid any possible discomfort and musculoskeletal disease resulting from prolonged sitting on the wheelchair. Five healthy subjects participated in this research. Five typical sitting postures by the wheelchair user, including the posture that applies a force on the backrest plate, were identified and classified. There were four pressure sensors attached to the seat plate of the wheelchair and two pressure sensors attached to the back rest. Three classification algorithms based on the supervised learning of machine learning, such as support vector machine (SVM), random forest (RF), and decision tree (DT) were used to classify the postures which produced an accuracy of 95.44%, 98.72%, and 98.80%, respectively. All the classification algorithms were evaluated by using the k-fold cross validation method. A graphical-user interface (GUI) based application was developed using the algorithm with the highest accuracy, DT classifier, to illustrate the result of the posture classification to the wheelchair user for any posture correction to be made in case of improper sitting posture detected. ABSTRAK: Penggunaan pembelajaran mesin dalam sistem penjagaan kesihatan terutama dalam mengawasi pergerakan pengguna kerusi roda dapat membantu meningkatkan kualiti hidup bagi mengelak sebarang risiko serius seperti ulser disebabkan tekanan duduk terlalu lama di kerusi roda. Sehingga kini, kajian tentang pengesanan postur ketika duduk di kerusi roda adalah sangat kurang. Oleh itu, kajian ini bertujuan bagi membina sistem pengesan postur khususnya bagi mengawasi dan mengesan postur duduk pengguna kerusi roda dengan menggunakan pengesan tekanan bagi mengelak sebarang kemungkinan ketidakselesaan dan penyakit otot akibat duduk terlalu lama. Lima pengguna kerusi roda yang sihat telah dijadikan subjek bagi kajian ini. Terdapat lima postur duduk oleh pengguna kerusi roda termasuk postur yang memberikan tekanan pada bahagian belakang telah di kenalpasti dan dikelaskan. Terdapat empat pengesan tekanan dilekatkan pada bahagian tempat duduk kerusi roda dan dua pengesan tekanan dilekatkan pada bahagian belakang. Tiga algoritma pengelasan berdasarkan pembelajaran terarah melalui pembelajaran mesin seperti Sokongan Vektor Mesin (SVM), Hutan Rawak (RF) dan Pokok Keputusan (DT) telah digunakan bagi pengelasan postur di mana masing-masing memberikan ketepatan 95.44%, 98.72% dan 98.80%. Semua algoritma pengelasan telah dinilai menggunakan kaedah k-lipatan pengesahan bersilang. Sebuah aplikasi grafik antara muka  (GUI) telah dibina menggunakan algoritma dengan ketepatan paling tinggi, iaitu pengelasan DT bagi memaparkan keputusan pengelasan postur untuk pengguna kerusi roda bagi membantu pembetulan postur jika postur salah dikesan.
利用压力传感器的轮椅坐姿检测系统
在医疗保健系统中使用机器学习,特别是监测那些使用轮椅行动的人,也有助于提高他们的生活质量,防止任何严重的生命风险,例如由于长时间坐在轮椅上而导致的压疮。迄今为止,有关轮椅坐姿检测的研究还很少。因此,本研究旨在开发一种坐姿检测系统,主要通过压力传感器监测和检测轮椅使用者的坐姿,以避免长时间坐在轮椅上可能造成的任何不适和肌肉骨骼疾病。五名健康受试者参与了这项研究。研究人员对轮椅使用者的五种典型坐姿进行了识别和分类,其中包括对靠背板施力的坐姿。轮椅座板上安装了四个压力传感器,靠背上安装了两个压力传感器。在对姿势进行分类时,使用了三种基于机器学习监督学习的分类算法,如支持向量机(SVM)、随机森林(RF)和决策树(DT),其准确率分别为 95.44%、98.72% 和 98.80%。所有分类算法均采用 k 倍交叉验证法进行评估。使用准确率最高的算法 DT 分类器开发了一个基于图形用户界面(GUI)的应用程序,向轮椅用户展示姿势分类的结果,以便在检测到坐姿不正确时进行姿势纠正。研究结果:从轮椅使用者的坐姿分类系统中获得的数据,可以帮助人们了解轮椅使用者的坐姿,从而对其坐姿进行纠正。在这种情况下,对在户外工作的人来说,预防溺水是一项艰巨的任务。因此,我们需要建立一套系统来预防和治疗在昼夜颠倒的情况下出现的褥疮,同时还需要建立一个技术系统,以预防和治疗褥疮。您也可以将您的身体状况记录下来。在工作岗位上的工作压力是指工作岗位上的员工在工作中遇到的困难和问题。我们可以从这些数据中看出,有多少技术人员能在社区中发挥重要作用,又有多少技术人员能在社区中发挥重要作用。通过SVM算法、RF算法和DT算法,可对95.44%、98.72%和98.80%的后坐力进行预测。该系统的算法可确保对 "阈值 "和 "阈值 "的控制。有一个图形用户界面(GUI)软件可帮助用户使用现有的算法,其中包括 DT 算法,该算法可帮助用户记录溺水者的溺水时间,并在溺水者溺水时记录溺水者的溺水时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IIUM Engineering Journal
IIUM Engineering Journal ENGINEERING, MULTIDISCIPLINARY-
CiteScore
2.10
自引率
20.00%
发文量
57
审稿时长
40 weeks
期刊介绍: The IIUM Engineering Journal, published biannually (June and December), is a peer-reviewed open-access journal of the Faculty of Engineering, International Islamic University Malaysia (IIUM). The IIUM Engineering Journal publishes original research findings as regular papers, review papers (by invitation). The Journal provides a platform for Engineers, Researchers, Academicians, and Practitioners who are highly motivated in contributing to the Engineering disciplines, and Applied Sciences. It also welcomes contributions that address solutions to the specific challenges of the developing world, and address science and technology issues from an Islamic and multidisciplinary perspective. Subject areas suitable for publication are as follows: -Chemical and Biotechnology Engineering -Civil and Environmental Engineering -Computer Science and Information Technology -Electrical, Computer, and Communications Engineering -Engineering Mathematics and Applied Science -Materials and Manufacturing Engineering -Mechanical and Aerospace Engineering -Mechatronics and Automation Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信