Estimation of Long-Term Suspended Sediment Yield from a Small Agricultural Catchment

IF 1.3 Q4 ENGINEERING, ENVIRONMENTAL
Adam Krajewski, K. Banasik, L. Hejduk
{"title":"Estimation of Long-Term Suspended Sediment Yield from a Small Agricultural Catchment","authors":"Adam Krajewski, K. Banasik, L. Hejduk","doi":"10.12911/22998993/174122","DOIUrl":null,"url":null,"abstract":"Predicting and estimating sediment yield from the catchment is crucial for the effective management of water resources and controlling soil erosion. Universal Soil Loss Equations (USLE) and their modifications have been appreciated and commonly applied among many methods. The idea of this work is to use the ESDAC database (a web platform hosting a series of pan-European and global datasets on soil erosion) to build the modified form of the USLE for the Zagożdzonka catchment, a small agricultural area located in central Poland. The calculated sediment yield is compared with the one determined based on the reservoir survey. The conducted analyses show that the average annual suspended sediment yield from the study catchment estimated using the MUSLE equation accounts for 201 Mg and is close to that determined based on the reservoir survey, i.e., 248 Mg. However, MUSLE, with the initially proposed parameters, will overpredict sediment transport at the study site. The ESDAC database may support local studies concerning soil erosion and sediment transport. The research is helpful for policymakers, planners, and engineers.","PeriodicalId":15652,"journal":{"name":"Journal of Ecological Engineering","volume":"8 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ecological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12911/22998993/174122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting and estimating sediment yield from the catchment is crucial for the effective management of water resources and controlling soil erosion. Universal Soil Loss Equations (USLE) and their modifications have been appreciated and commonly applied among many methods. The idea of this work is to use the ESDAC database (a web platform hosting a series of pan-European and global datasets on soil erosion) to build the modified form of the USLE for the Zagożdzonka catchment, a small agricultural area located in central Poland. The calculated sediment yield is compared with the one determined based on the reservoir survey. The conducted analyses show that the average annual suspended sediment yield from the study catchment estimated using the MUSLE equation accounts for 201 Mg and is close to that determined based on the reservoir survey, i.e., 248 Mg. However, MUSLE, with the initially proposed parameters, will overpredict sediment transport at the study site. The ESDAC database may support local studies concerning soil erosion and sediment transport. The research is helpful for policymakers, planners, and engineers.
一个小型农业集水区的长期悬浮沉积物产量估算
预测和估算集水区的泥沙产量对于有效管理水资源和控制水土流失至关重要。通用土壤流失方程(USLE)及其修正版在许多方法中都得到了重视和普遍应用。这项工作的想法是利用 ESDAC 数据库(一个承载一系列泛欧和全球土壤侵蚀数据集的网络平台),为 Zagożdzonka 流域(位于波兰中部的一个小型农业区)建立修正形式的 USLE。计算得出的泥沙产量与根据水库调查确定的产量进行了比较。分析表明,使用 MUSLE 方程估算出的研究流域年均悬浮泥沙量为 201 兆克,接近根据水库调查确定的年均悬浮泥沙量(即 248 兆克)。不过,根据最初提出的参数,MUSLE 公式会高估研究地点的沉积物输运。ESDAC 数据库可支持当地有关土壤侵蚀和沉积物迁移的研究。这项研究对决策者、规划者和工程师都很有帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Ecological Engineering
Journal of Ecological Engineering ENGINEERING, ENVIRONMENTAL-
CiteScore
2.60
自引率
15.40%
发文量
379
审稿时长
8 weeks
期刊介绍: - Industrial and municipal waste management - Pro-ecological technologies and products - Energy-saving technologies - Environmental landscaping - Environmental monitoring - Climate change in the environment - Sustainable development - Processing and usage of mineral resources - Recovery of valuable materials and fuels - Surface water and groundwater management - Water and wastewater treatment - Smog and air pollution prevention - Protection and reclamation of soils - Reclamation and revitalization of degraded areas - Heavy metals in the environment - Renewable energy technologies - Environmental protection of rural areas - Restoration and protection of urban environment - Prevention of noise in the environment - Environmental life-cycle assessment (LCA) - Simulations and computer modeling for the environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信