Mendeteksi Faktor-faktor Pressure Terhadap Kecurangan Laporan Keuangan Menggunakan Artificial Neural Network

Owner Pub Date : 2024-01-01 DOI:10.33395/owner.v8i1.1895
Andrea Titania Chalissa, Elly Suryani
{"title":"Mendeteksi Faktor-faktor Pressure Terhadap Kecurangan Laporan Keuangan Menggunakan Artificial Neural Network","authors":"Andrea Titania Chalissa, Elly Suryani","doi":"10.33395/owner.v8i1.1895","DOIUrl":null,"url":null,"abstract":"Fraudulent financial statements are the result of misstatements resulting from intentional acts or omissions, which could materially mislead readers of the financial statements. The focus in this research is to determine the most important pressure factors in detecting fraudulent financial statements. Pressure is one of the fraud risk factors in the fraud triangle. Pressure is a condition felt by management due to incentives to commit fraud, consisting of: financial stability by proxy (GPM, ACHANGE, SCHANGE, CATA, SALAR, SALTA, INVSAL), external pressure (LEV, FINANCE, FREEC), personal financial need (OSHIP), and financial target (ROA). Data collection method using secondary data on the manufacturing sector firms that are publicly listed on the Indonesia Stock Exchange in 2017-2021. The research method used is quantitative and the sampling method uses a purposive sampling technique, obtained 137 sample companies with 685 total data observed. Data were analyzed using an Artificial Neural Network. The findings indicated that the gross profit margin (GPM), cash flow from operating to total assets (CATA), demand for financing (FINANCE), leverage (LEV) and return on total assets (ROA) is the most important proxy in detecting fraudulent financial statement, while other proxies are not too important in detecting fraudulent financial statements.","PeriodicalId":124624,"journal":{"name":"Owner","volume":"48 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Owner","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33395/owner.v8i1.1895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fraudulent financial statements are the result of misstatements resulting from intentional acts or omissions, which could materially mislead readers of the financial statements. The focus in this research is to determine the most important pressure factors in detecting fraudulent financial statements. Pressure is one of the fraud risk factors in the fraud triangle. Pressure is a condition felt by management due to incentives to commit fraud, consisting of: financial stability by proxy (GPM, ACHANGE, SCHANGE, CATA, SALAR, SALTA, INVSAL), external pressure (LEV, FINANCE, FREEC), personal financial need (OSHIP), and financial target (ROA). Data collection method using secondary data on the manufacturing sector firms that are publicly listed on the Indonesia Stock Exchange in 2017-2021. The research method used is quantitative and the sampling method uses a purposive sampling technique, obtained 137 sample companies with 685 total data observed. Data were analyzed using an Artificial Neural Network. The findings indicated that the gross profit margin (GPM), cash flow from operating to total assets (CATA), demand for financing (FINANCE), leverage (LEV) and return on total assets (ROA) is the most important proxy in detecting fraudulent financial statement, while other proxies are not too important in detecting fraudulent financial statements.
利用人工神经网络检测财务报表欺诈的压力因素
欺诈性财务报表是由故意行为或遗漏造成的错报,可能对财务报表的读者产生重大误导。本研究的重点是确定在发现欺诈性财务报表时最重要的压力因素。压力是欺诈三角中的欺诈风险因素之一。压力是管理层因实施欺诈的动机而感受到的一种状况,包括:代理财务稳定性(GPM、ACHANGE、SCHANGE、CATA、SALAR、SALTA、INVSAL)、外部压力(LEV、FINANCE、FREEC)、个人财务需求(OSHIP)和财务目标(ROA)。数据收集方法采用2017-2021年在印尼证券交易所公开上市的制造业企业的二手数据。采用的研究方法是定量研究,抽样方法采用目的性抽样技术,获得了 137 家样本公司,共观察到 685 个数据。数据使用人工神经网络进行分析。研究结果表明,毛利率(GPM)、经营现金流与总资产比率(CATA)、融资需求(FINANCE)、杠杆率(LEV)和总资产收益率(ROA)是检测虚假财务报表的最重要代理指标,而其他代理指标在检测虚假财务报表方面不太重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信