{"title":"A Data-Driven Machine Learning Approach for Turbulent Flow Field Prediction Based on Direct Computational Fluid Dynamics Database","authors":"M. Nemati, †. A.Jahangirian","doi":"10.47176/jafm.17.1.2109","DOIUrl":null,"url":null,"abstract":"A novel approach is presented for predicting compressible turbulent flow fields using a neural network-based data-driven method. Accurate prediction in turbulent regions heavily relies on the resolution of available data. Traditional methods, employing image-based techniques by mapping scattered computational fluid dynamics (CFD) data onto Cartesian grids, encounter data scarcity in critical areas such as the boundary layer and wake. Recently, convolutional neural networks (CNN) have gained prominence as the most widely referenced technique in fluid dynamics, utilizing flow field images as datasets for flow field prediction. However, CNN requires datasets with a high pixel density to enhance training accuracy in crucial regions, thereby increasing the input data volume and machine training time. To address this challenge, our proposed method deviates from using flow field images and instead generates datasets directly from the flow field properties of CFD grid points. By employing this approach, several advantages are realized. Firstly, the network benefits from the favorable characteristics of unstructured grids, such as varying point spacing near the object surface and in the far field, which effectively reduces the amount of input data and consequently the machine training cost. Secondly, the construction of the training dataset eliminates the need for interpolation or extrapolation, thereby preserving the accuracy of CFD data. In this case, a simple multilayer perceptron can be trained using the proposed dataset. Various flow field properties, including static pressure, turbulent kinetic energy, and velocity components, can be predicted with high accuracy within a few seconds.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":"43 11","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.1.2109","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
A novel approach is presented for predicting compressible turbulent flow fields using a neural network-based data-driven method. Accurate prediction in turbulent regions heavily relies on the resolution of available data. Traditional methods, employing image-based techniques by mapping scattered computational fluid dynamics (CFD) data onto Cartesian grids, encounter data scarcity in critical areas such as the boundary layer and wake. Recently, convolutional neural networks (CNN) have gained prominence as the most widely referenced technique in fluid dynamics, utilizing flow field images as datasets for flow field prediction. However, CNN requires datasets with a high pixel density to enhance training accuracy in crucial regions, thereby increasing the input data volume and machine training time. To address this challenge, our proposed method deviates from using flow field images and instead generates datasets directly from the flow field properties of CFD grid points. By employing this approach, several advantages are realized. Firstly, the network benefits from the favorable characteristics of unstructured grids, such as varying point spacing near the object surface and in the far field, which effectively reduces the amount of input data and consequently the machine training cost. Secondly, the construction of the training dataset eliminates the need for interpolation or extrapolation, thereby preserving the accuracy of CFD data. In this case, a simple multilayer perceptron can be trained using the proposed dataset. Various flow field properties, including static pressure, turbulent kinetic energy, and velocity components, can be predicted with high accuracy within a few seconds.
期刊介绍:
The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .