H. Wu, F. Jin, Y. Luo, Y. Ge, Q. Wei, C. Zeng, X. Liu, W. Zhang, D. Miao, H. Bai
{"title":"Suppressing the Vortex Rope Oscillation and Pressure Fluctuations by the Air Admission in Propeller Hydro-Turbine Draft Tube","authors":"H. Wu, F. Jin, Y. Luo, Y. Ge, Q. Wei, C. Zeng, X. Liu, W. Zhang, D. Miao, H. Bai","doi":"10.47176/jafm.17.1.1994","DOIUrl":null,"url":null,"abstract":"For the purpose of automatic generation control (AGC), a portion of the propeller hydro-turbine units in China is adjusted to operate within a restricted range of 75%-85% load using computer-controlled AGC strategies. In engineering applications, it has been observed that when a propeller hydro-turbine unit operates under off-design conditions, a large-scale vortex rope would occur in the draft tube, leading to significant pressure fluctuations. Injecting air into the draft tube to reduce the amplitude of pressure fluctuations is a common practice, but its effectiveness has not been proven on propeller hydro-turbine units. In this study, a CFD model of a propeller hydro-turbine was established, and 15 cases with different guide vane openings (GVO, between 31° and 45°) under unsteady conditions were calculated and studied. Two air admission measures were introduced to suppress the vortex rope oscillation in the draft tube and to mitigate pressure fluctuations. The reason for the additional energy loss due to air admission was then explained by the entropy production theory, and its value was quantified. This study points out that when injecting air, it is necessary to first consider whether the air will obstruct the flow in the draft tube. Finally, based on simulation and experimental data under various load conditions, pressure fluctuation analysis (based on fast Fourier transform, FFT) was conducted to assess the effectiveness of air admission measures. This study can provide an additional option for balancing unit efficiency and stability when scheduling units using an AGC strategy.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":"14 6","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.1.1994","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
For the purpose of automatic generation control (AGC), a portion of the propeller hydro-turbine units in China is adjusted to operate within a restricted range of 75%-85% load using computer-controlled AGC strategies. In engineering applications, it has been observed that when a propeller hydro-turbine unit operates under off-design conditions, a large-scale vortex rope would occur in the draft tube, leading to significant pressure fluctuations. Injecting air into the draft tube to reduce the amplitude of pressure fluctuations is a common practice, but its effectiveness has not been proven on propeller hydro-turbine units. In this study, a CFD model of a propeller hydro-turbine was established, and 15 cases with different guide vane openings (GVO, between 31° and 45°) under unsteady conditions were calculated and studied. Two air admission measures were introduced to suppress the vortex rope oscillation in the draft tube and to mitigate pressure fluctuations. The reason for the additional energy loss due to air admission was then explained by the entropy production theory, and its value was quantified. This study points out that when injecting air, it is necessary to first consider whether the air will obstruct the flow in the draft tube. Finally, based on simulation and experimental data under various load conditions, pressure fluctuation analysis (based on fast Fourier transform, FFT) was conducted to assess the effectiveness of air admission measures. This study can provide an additional option for balancing unit efficiency and stability when scheduling units using an AGC strategy.
期刊介绍:
The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .