Averaging Principle for BSDEs driven by fractional Brownian motion with non Lipschitz coefficients

Sadibou Aidara, Bidji Ndiaye, A. B. Sow
{"title":"Averaging Principle for BSDEs driven by fractional Brownian motion with non Lipschitz coefficients","authors":"Sadibou Aidara, Bidji Ndiaye, A. B. Sow","doi":"10.21608/ejmaa.2023.205663.1025","DOIUrl":null,"url":null,"abstract":". Stochastic averaging for a class of backward stochastic differential equations with fractional Brownian motion, of the Hurst parameter H in the interval (cid:0) 12 , 1 (cid:1) , is investigated under the non-Lipschitz condition. An averaged fractional BSDEs for the original fractional BSDEs is proposed, and their solutions are quantitatively compared. Under some appropriate assumptions, the solutions to original systems can be approximated by the solutions to averaged stochastic systems, both in the sense of mean square and also in probability. The stochastic integral used throughout the paper is the divergence-type integral.","PeriodicalId":91074,"journal":{"name":"Electronic journal of mathematical analysis and applications","volume":"26 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic journal of mathematical analysis and applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/ejmaa.2023.205663.1025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. Stochastic averaging for a class of backward stochastic differential equations with fractional Brownian motion, of the Hurst parameter H in the interval (cid:0) 12 , 1 (cid:1) , is investigated under the non-Lipschitz condition. An averaged fractional BSDEs for the original fractional BSDEs is proposed, and their solutions are quantitatively compared. Under some appropriate assumptions, the solutions to original systems can be approximated by the solutions to averaged stochastic systems, both in the sense of mean square and also in probability. The stochastic integral used throughout the paper is the divergence-type integral.
非 Lipschitz 系数的分数布朗运动驱动的 BSDE 的平均原理
.在非 Lipschitz 条件下,研究了一类具有分式布朗运动的后向随机二阶方程的随机平均,其 Hurst 参数 H 在区间 (cid:0) 12 , 1 (cid:1) 内。提出了原始分式 BSDE 的平均分式 BSDE,并对它们的解进行了定量比较。在一些适当的假设条件下,原始系统的解可以用平均随机系统的解来近似,无论是在均方意义上还是在概率意义上。本文中使用的随机积分是发散型积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信