Mohammad Hamdan, E. Abdelhafez, Akram Musa, S. Ajib
{"title":"Estimation of Photovoltaic Module Performance with L-Shaped Aluminum Fins Using Weather Data","authors":"Mohammad Hamdan, E. Abdelhafez, Akram Musa, S. Ajib","doi":"10.12911/22998993/175497","DOIUrl":null,"url":null,"abstract":"Photovoltaic (PV) power prediction is vital for efficient and effective solar energy utilization within the energy ecosystem. It enables grid stability, cost savings, and the seamless integration of solar power into the broader energy infrastructure. In this work, previously obtained data on the estimation of the power produced by a PV, which is cooled by L-shaped aluminum fins attached to the backside of the PV at different spacings, is used to predict the power produced by the PV. This is achieved by employing both neural network models and multiple linear regression (MLR) techniques to assess the correlation between power generated by PV with L-shaped aluminum fins and its input variables. Two distinct approaches were employed for this purpose. The first approach involved the conventional MLR model, while the second utilized a neural network, specifically the multilayer perceptron (MLP) model. The estimated outcomes were subsequently compared against the previously measured data. The MLP model showed a great ability to identify the relationship between input and output variables, it was noted. The statistical error study provided evidence of data mining’s acceptable accuracy when using the MLP model. Conversely, the results indicated that the MLR technique exhibited the least ability to estimate the power generated by PV with L-shaped aluminum fins.","PeriodicalId":15652,"journal":{"name":"Journal of Ecological Engineering","volume":"55 18","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ecological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12911/22998993/175497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Photovoltaic (PV) power prediction is vital for efficient and effective solar energy utilization within the energy ecosystem. It enables grid stability, cost savings, and the seamless integration of solar power into the broader energy infrastructure. In this work, previously obtained data on the estimation of the power produced by a PV, which is cooled by L-shaped aluminum fins attached to the backside of the PV at different spacings, is used to predict the power produced by the PV. This is achieved by employing both neural network models and multiple linear regression (MLR) techniques to assess the correlation between power generated by PV with L-shaped aluminum fins and its input variables. Two distinct approaches were employed for this purpose. The first approach involved the conventional MLR model, while the second utilized a neural network, specifically the multilayer perceptron (MLP) model. The estimated outcomes were subsequently compared against the previously measured data. The MLP model showed a great ability to identify the relationship between input and output variables, it was noted. The statistical error study provided evidence of data mining’s acceptable accuracy when using the MLP model. Conversely, the results indicated that the MLR technique exhibited the least ability to estimate the power generated by PV with L-shaped aluminum fins.
期刊介绍:
- Industrial and municipal waste management - Pro-ecological technologies and products - Energy-saving technologies - Environmental landscaping - Environmental monitoring - Climate change in the environment - Sustainable development - Processing and usage of mineral resources - Recovery of valuable materials and fuels - Surface water and groundwater management - Water and wastewater treatment - Smog and air pollution prevention - Protection and reclamation of soils - Reclamation and revitalization of degraded areas - Heavy metals in the environment - Renewable energy technologies - Environmental protection of rural areas - Restoration and protection of urban environment - Prevention of noise in the environment - Environmental life-cycle assessment (LCA) - Simulations and computer modeling for the environment