Detection of Phishing Websites Hosted in Name Server Flux Networks Using Machine Learning

Thomas Nagunwa
{"title":"Detection of Phishing Websites Hosted in Name Server Flux Networks Using Machine Learning","authors":"Thomas Nagunwa","doi":"10.3844/jcssp.2024.10.32","DOIUrl":null,"url":null,"abstract":": Attackers are increasingly using Name Server IP Flux Networks (NSIFNs) to run the domain name services of their phishing websites in order to extend the duration of their phishing operations. These networks host a name server that manages the Domain Name System (DNS) records of the websites on a network of compromised machines with frequently changing IP addresses. As a result, blacklisting the machines has less impact on stopping the services, lengthening their lifespan and that of the websites they support. High detection delays and the use of fewer, lesser varied detection features limit the proposed solutions for identifying the websites hosted in these networks, making them more susceptible to detection evasions. This study suggests a novel set of highly diverse features based on DNS, network, and host behaviors for fast and highly accurate detection of phishing websites hosted in NSIFNs using a Machine Learning (ML) approach. Using a variety of traditional and deep learning ML algorithms, the prediction performance of our features was assessed in the context of binary and multi-class classification tasks. Our approach achieved optimal accuracy rates of 98.59% and 90.41% for the binary and multi-class classification tasks, respectively. Our approach is a crucial step toward monitoring NSIFN components to mitigate phishing attacks efficiently.","PeriodicalId":40005,"journal":{"name":"Journal of Computer Science","volume":"85 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jcssp.2024.10.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: Attackers are increasingly using Name Server IP Flux Networks (NSIFNs) to run the domain name services of their phishing websites in order to extend the duration of their phishing operations. These networks host a name server that manages the Domain Name System (DNS) records of the websites on a network of compromised machines with frequently changing IP addresses. As a result, blacklisting the machines has less impact on stopping the services, lengthening their lifespan and that of the websites they support. High detection delays and the use of fewer, lesser varied detection features limit the proposed solutions for identifying the websites hosted in these networks, making them more susceptible to detection evasions. This study suggests a novel set of highly diverse features based on DNS, network, and host behaviors for fast and highly accurate detection of phishing websites hosted in NSIFNs using a Machine Learning (ML) approach. Using a variety of traditional and deep learning ML algorithms, the prediction performance of our features was assessed in the context of binary and multi-class classification tasks. Our approach achieved optimal accuracy rates of 98.59% and 90.41% for the binary and multi-class classification tasks, respectively. Our approach is a crucial step toward monitoring NSIFN components to mitigate phishing attacks efficiently.
利用机器学习检测名称服务器流量网络中托管的钓鱼网站
:攻击者越来越多地使用名称服务器 IP 流量网络(NSIFN)来运行其钓鱼网站的域名服务,以延长其钓鱼行动的持续时间。这些网络托管一个名称服务器,该服务器在IP地址经常变化的受攻击机器网络上管理网站的域名系统(DNS)记录。因此,将这些机器列入黑名单对停止服务的影响较小,从而延长了它们及其所支持网站的寿命。高检测延迟和使用较少、变化较少的检测功能限制了所提出的识别这些网络中托管的网站的解决方案,使其更容易受到检测规避的影响。本研究提出了一套基于 DNS、网络和主机行为的高度多样化的新特征,可使用机器学习 (ML) 方法快速、高度准确地检测 NSIFN 中托管的钓鱼网站。利用各种传统和深度学习 ML 算法,我们在二元和多类分类任务中评估了特征的预测性能。在二元分类和多类分类任务中,我们的方法分别实现了 98.59% 和 90.41% 的最佳准确率。我们的方法为监控 NSIFN 组件以有效缓解网络钓鱼攻击迈出了关键一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computer Science
Journal of Computer Science Computer Science-Computer Networks and Communications
CiteScore
1.70
自引率
0.00%
发文量
92
期刊介绍: Journal of Computer Science is aimed to publish research articles on theoretical foundations of information and computation, and of practical techniques for their implementation and application in computer systems. JCS updated twelve times a year and is a peer reviewed journal covers the latest and most compelling research of the time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信