Jiyin Zhang , Xiang Que , Bhuwan Madhikarmi , Robert M. Hazen , Jolyon Ralph , Anirudh Prabhu , Shaunna M. Morrison , Xiaogang Ma
{"title":"Using a 3D heat map to explore the diverse correlations among elements and mineral species","authors":"Jiyin Zhang , Xiang Que , Bhuwan Madhikarmi , Robert M. Hazen , Jolyon Ralph , Anirudh Prabhu , Shaunna M. Morrison , Xiaogang Ma","doi":"10.1016/j.acags.2024.100154","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an enhanced 3D heat map for exploratory data analysis (EDA) of open mineral data, addressing the challenges caused by rapidly evolving datasets and ensuring scientifically meaningful data exploration. The Mindat website, a crowd-sourced database of mineral species, provides a constantly updated open data source via its newly established application programming interface (API). To illustrate the potential usage of the API, we constructed an automatic workflow to retrieve and cleanse mineral data from it, thus feeding the 3D heat map with up-to-date records of mineral species. In the 3D heat map, we developed scientifically sound operations for data selection and visualization by incorporating knowledge from existing mineral classification systems and recent studies in mineralogy. The resulting 3D heat map has been shared as an online demo system, with the source code made open on GitHub. We hope this updated 3D heat map system will serve as a valuable resource for researchers, educators, and students in geosciences, demonstrating the potential for data-intensive research in mineralogy and broader geoscience disciplines.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"21 ","pages":"Article 100154"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590197424000016/pdfft?md5=0b52703561a3bfd2d7bf0ed0e4d6590e&pid=1-s2.0-S2590197424000016-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197424000016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an enhanced 3D heat map for exploratory data analysis (EDA) of open mineral data, addressing the challenges caused by rapidly evolving datasets and ensuring scientifically meaningful data exploration. The Mindat website, a crowd-sourced database of mineral species, provides a constantly updated open data source via its newly established application programming interface (API). To illustrate the potential usage of the API, we constructed an automatic workflow to retrieve and cleanse mineral data from it, thus feeding the 3D heat map with up-to-date records of mineral species. In the 3D heat map, we developed scientifically sound operations for data selection and visualization by incorporating knowledge from existing mineral classification systems and recent studies in mineralogy. The resulting 3D heat map has been shared as an online demo system, with the source code made open on GitHub. We hope this updated 3D heat map system will serve as a valuable resource for researchers, educators, and students in geosciences, demonstrating the potential for data-intensive research in mineralogy and broader geoscience disciplines.