Jian-Ping Li, Zhang-Long Chen, Jin-Ping Zhuang, Jun Liu, Shun Wang
{"title":"Analytical models for electroosmotic consolidation of layered soil systems considering the boundary effects of horizontal electrodes","authors":"Jian-Ping Li, Zhang-Long Chen, Jin-Ping Zhuang, Jun Liu, Shun Wang","doi":"10.1002/nag.3686","DOIUrl":null,"url":null,"abstract":"<p>The pore water can usually flow through the horizontal electrodes, resulting in the top sand layer and the bottom unelectroosmotic layer inevitably affecting the consolidation process of the electroosmotic layer. However, the traditional assumption of the fully drained or undrained electrode boundaries is unable to reflect these boundary effects. In this study, one-dimensional analytical models for electroosmotic consolidation of the layered soil systems considering the boundary effects of horizontal electrodes are proposed. The solutions for the models are derived using the separate variable method and Laplace transform method. The rationality of the one-dimensional model is also illustrated by comparing it with the results produced by the two-dimensional model and the accuracies of the solutions are verified through a series of analytical and numerical validation examples. Parametric studies are conducted to investigate the effects of the sand layer and the unelectroosmotic layer on the consolidation process. Results show that both the sand layer and the unelectroosmotic layer may significantly delay the consolidation progress. The time factor corresponding to 90% average degree of consolidation (<i>T</i><sub>v_90%</sub><i><sub>U</sub></i><sub>*</sub>) can increase by over 1.5 times in comparison with the model without a sand layer when the permeability coefficient ratio of the subsoil to the upper layer reaches 10. The delayed effect is particularly pronounced when the thickness of the unelectroosmotic layer with higher compressibility is relatively larger, potentially resulting in a tenfold or even greater increase in <i>T</i><sub>v_90%</sub><i><sub>U</sub></i><sub>*</sub>.</p>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"48 5","pages":"1323-1344"},"PeriodicalIF":3.6000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nag.3686","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The pore water can usually flow through the horizontal electrodes, resulting in the top sand layer and the bottom unelectroosmotic layer inevitably affecting the consolidation process of the electroosmotic layer. However, the traditional assumption of the fully drained or undrained electrode boundaries is unable to reflect these boundary effects. In this study, one-dimensional analytical models for electroosmotic consolidation of the layered soil systems considering the boundary effects of horizontal electrodes are proposed. The solutions for the models are derived using the separate variable method and Laplace transform method. The rationality of the one-dimensional model is also illustrated by comparing it with the results produced by the two-dimensional model and the accuracies of the solutions are verified through a series of analytical and numerical validation examples. Parametric studies are conducted to investigate the effects of the sand layer and the unelectroosmotic layer on the consolidation process. Results show that both the sand layer and the unelectroosmotic layer may significantly delay the consolidation progress. The time factor corresponding to 90% average degree of consolidation (Tv_90%U*) can increase by over 1.5 times in comparison with the model without a sand layer when the permeability coefficient ratio of the subsoil to the upper layer reaches 10. The delayed effect is particularly pronounced when the thickness of the unelectroosmotic layer with higher compressibility is relatively larger, potentially resulting in a tenfold or even greater increase in Tv_90%U*.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.