Raghawendra Sisodia , Marek Weglowski , Piotr Sliwinski
{"title":"In situ localised post-weld heat treatment with electron beam welding of S690QL steel","authors":"Raghawendra Sisodia , Marek Weglowski , Piotr Sliwinski","doi":"10.1016/j.jajp.2023.100182","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this research is to assess the influence of in-situ localised electron beam post-weld heat treatment (LEB-PWHT) on the microstructure and mechanical properties of high-strength S690QL steel welded joints utilising highly sophisticated electron beam welding (EBW) technology. Although EBW is well-known for creating high-quality welds, the addition of the novel LEB-PWHT technique may significantly improve the characteristics of the welded joints. To systematically analyse the impacts of PWHT on the welded joints, the study employs microstructural analysis like optical microscopy and mechanical properties like microhardness testing, bending, tensile, and impact tests. Furthermore, tensile fractography analysed by scanning electron microscopy (SEM) to provide detailed insights into the fracture behaviour of the welded joints. The results show that the in-situ PWHT approach improves the microstructure and mechanical characteristics of the welded joints, such as a lower hardness peak in the heat affected zone (HAZ), increased tensile strength (5%), and improved toughness by 7 times. LEB-PWHT fractured surface revealed smaller, more sharply defined dimples and micro-voids. These results suggest that in-situ PWHT is an attractive option for improving the quality and performance of welds in a wide range of applications incorporating S690QL steel.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"9 ","pages":"Article 100182"},"PeriodicalIF":3.8000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330923000444/pdfft?md5=cd0b6577fdb63741c5f48c82dd12f702&pid=1-s2.0-S2666330923000444-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330923000444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this research is to assess the influence of in-situ localised electron beam post-weld heat treatment (LEB-PWHT) on the microstructure and mechanical properties of high-strength S690QL steel welded joints utilising highly sophisticated electron beam welding (EBW) technology. Although EBW is well-known for creating high-quality welds, the addition of the novel LEB-PWHT technique may significantly improve the characteristics of the welded joints. To systematically analyse the impacts of PWHT on the welded joints, the study employs microstructural analysis like optical microscopy and mechanical properties like microhardness testing, bending, tensile, and impact tests. Furthermore, tensile fractography analysed by scanning electron microscopy (SEM) to provide detailed insights into the fracture behaviour of the welded joints. The results show that the in-situ PWHT approach improves the microstructure and mechanical characteristics of the welded joints, such as a lower hardness peak in the heat affected zone (HAZ), increased tensile strength (5%), and improved toughness by 7 times. LEB-PWHT fractured surface revealed smaller, more sharply defined dimples and micro-voids. These results suggest that in-situ PWHT is an attractive option for improving the quality and performance of welds in a wide range of applications incorporating S690QL steel.