Learning nonlinear integral operators via recurrent neural networks and its application in solving integro-differential equations

Hardeep Bassi , Yuanran Zhu , Senwei Liang , Jia Yin , Cian C. Reeves , Vojtěch Vlček , Chao Yang
{"title":"Learning nonlinear integral operators via recurrent neural networks and its application in solving integro-differential equations","authors":"Hardeep Bassi ,&nbsp;Yuanran Zhu ,&nbsp;Senwei Liang ,&nbsp;Jia Yin ,&nbsp;Cian C. Reeves ,&nbsp;Vojtěch Vlček ,&nbsp;Chao Yang","doi":"10.1016/j.mlwa.2023.100524","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we propose using LSTM-RNNs (Long Short-Term Memory-Recurrent Neural Networks) to learn and represent nonlinear integral operators that appear in nonlinear integro-differential equations (IDEs). The LSTM-RNN representation of the nonlinear integral operator allows us to turn a system of nonlinear integro-differential equations into a system of ordinary differential equations for which many efficient solvers are available. Furthermore, because the use of LSTM-RNN representation of the nonlinear integral operator in an IDE eliminates the need to perform a numerical integration in each numerical time evolution step, the overall temporal cost of the LSTM-RNN-based IDE solver can be reduced to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> from <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msubsup><mrow><mi>n</mi></mrow><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo></mrow></mrow></math></span> if a <span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span>-step trajectory is to be computed. We illustrate the efficiency and robustness of this LSTM-RNN-based numerical IDE solver with a model problem. Additionally, we highlight the generalizability of the learned integral operator by applying it to IDEs driven by different external forces. As a practical application, we show how this methodology can effectively solve the Dyson’s equation for quantum many-body systems.</p></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"15 ","pages":"Article 100524"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666827023000774/pdfft?md5=e7dece6581dbf391df9d505308d5c9d8&pid=1-s2.0-S2666827023000774-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827023000774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose using LSTM-RNNs (Long Short-Term Memory-Recurrent Neural Networks) to learn and represent nonlinear integral operators that appear in nonlinear integro-differential equations (IDEs). The LSTM-RNN representation of the nonlinear integral operator allows us to turn a system of nonlinear integro-differential equations into a system of ordinary differential equations for which many efficient solvers are available. Furthermore, because the use of LSTM-RNN representation of the nonlinear integral operator in an IDE eliminates the need to perform a numerical integration in each numerical time evolution step, the overall temporal cost of the LSTM-RNN-based IDE solver can be reduced to O(nT) from O(nT2) if a nT-step trajectory is to be computed. We illustrate the efficiency and robustness of this LSTM-RNN-based numerical IDE solver with a model problem. Additionally, we highlight the generalizability of the learned integral operator by applying it to IDEs driven by different external forces. As a practical application, we show how this methodology can effectively solve the Dyson’s equation for quantum many-body systems.

通过递归神经网络学习非线性积分算子及其在求解积分微分方程中的应用
在本文中,我们建议使用 LSTM-RNN(长短期记忆-递归神经网络)来学习和表示出现在非线性积分微分方程(IDE)中的非线性积分算子。通过 LSTM-RNN 表示非线性积分算子,我们可以将非线性积分微分方程系转化为常微分方程系,而常微分方程系有许多高效的求解器。此外,由于在 IDE 中使用 LSTM-RNN 表示非线性积分算子,无需在每个数值时间演化步中执行数值积分,因此如果要计算 nT 步轨迹,基于 LSTM-RNN 的 IDE 求解器的总体时间成本可从 O(nT2) 降至 O(nT)。我们通过一个模型问题说明了这种基于 LSTM-RNN 的数值 IDE 求解器的效率和鲁棒性。此外,我们还将学习到的积分算子应用于由不同外力驱动的 IDE,从而突出了它的通用性。在实际应用中,我们展示了这种方法如何有效地求解量子多体系统的戴森方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信