On the Bezrukavnikov–Kaledin quantization of symplectic varieties in characteristic p

IF 1.3 1区 数学 Q1 MATHEMATICS
Ekaterina Bogdanova, Vadim Vologodsky
{"title":"On the Bezrukavnikov–Kaledin quantization of symplectic varieties in characteristic p","authors":"Ekaterina Bogdanova, Vadim Vologodsky","doi":"10.1112/s0010437x23007601","DOIUrl":null,"url":null,"abstract":"<p>We prove that after inverting the Planck constant <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104174227480-0294:S0010437X23007601:S0010437X23007601_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$h$</span></span></img></span></span>, the Bezrukavnikov–Kaledin quantization <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104174227480-0294:S0010437X23007601:S0010437X23007601_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$(X, {\\mathcal {O}}_h)$</span></span></img></span></span> of symplectic variety <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104174227480-0294:S0010437X23007601:S0010437X23007601_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$X$</span></span></img></span></span> in characteristic <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104174227480-0294:S0010437X23007601:S0010437X23007601_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104174227480-0294:S0010437X23007601:S0010437X23007601_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$H^2(X, {\\mathcal {O}}_X) =0$</span></span></img></span></span> is Morita equivalent to a certain central reduction of the algebra of differential operators on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104174227480-0294:S0010437X23007601:S0010437X23007601_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$X$</span></span></img></span></span>.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"30 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x23007601","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that after inverting the Planck constant Abstract Image$h$, the Bezrukavnikov–Kaledin quantization Abstract Image$(X, {\mathcal {O}}_h)$ of symplectic variety Abstract Image$X$ in characteristic Abstract Image$p$ with Abstract Image$H^2(X, {\mathcal {O}}_X) =0$ is Morita equivalent to a certain central reduction of the algebra of differential operators on Abstract Image$X$.

论特征 p 中交错变体的贝兹鲁卡夫尼科夫-卡列丁量子化
我们证明,在反转普朗克常数 $h$ 之后,特征 $p$ 的交错杂元 $X$ 的贝兹鲁卡夫尼科夫-卡列丁量子化 $(X, {\mathcal {O}}_h)$ 与 $H^2(X, {\mathcal {O}}_X) =0$ 是与 $X$ 上微分算子代数的某个中心还原等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信