{"title":"Diazinon degradation in water applying glow discharge plasma technology","authors":"Francisco E. Rodrigues, Fabiano A. N. Fernandes","doi":"10.1007/s43153-023-00427-7","DOIUrl":null,"url":null,"abstract":"<p>Pesticides are chemical compounds widely used in crop pest control, ensuring high productivity and product quality control. However, pesticides are toxic and can be bioaccumulative. Their excessive use causes environmental and health impacts. In this study, the potential of glow discharge plasma to degrade diazinon present in water was investigated. For the degradation process, a glow discharge plasma (GDP) system was used to process diazinon at several plasma flow rates (10, 20, and 30 mL/min) and exposure times (10, 20, and 30 min). The degradation levels and the identification of the by-products were analyzed by gas chromatography coupled to mass spectrum (GC-MS). GDP processing efficiently degraded diazinon, reaching a maximum potential degradation of 8.19 ± 0.92 mg/L, sufficient to bring diazinon-contaminated waters to safe levels. Two parallel degradation routes were proposed for diazinon degradation by cold plasma.</p>","PeriodicalId":9194,"journal":{"name":"Brazilian Journal of Chemical Engineering","volume":"54 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-023-00427-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pesticides are chemical compounds widely used in crop pest control, ensuring high productivity and product quality control. However, pesticides are toxic and can be bioaccumulative. Their excessive use causes environmental and health impacts. In this study, the potential of glow discharge plasma to degrade diazinon present in water was investigated. For the degradation process, a glow discharge plasma (GDP) system was used to process diazinon at several plasma flow rates (10, 20, and 30 mL/min) and exposure times (10, 20, and 30 min). The degradation levels and the identification of the by-products were analyzed by gas chromatography coupled to mass spectrum (GC-MS). GDP processing efficiently degraded diazinon, reaching a maximum potential degradation of 8.19 ± 0.92 mg/L, sufficient to bring diazinon-contaminated waters to safe levels. Two parallel degradation routes were proposed for diazinon degradation by cold plasma.
期刊介绍:
The Brazilian Journal of Chemical Engineering is a quarterly publication of the Associação Brasileira de Engenharia Química (Brazilian Society of Chemical Engineering - ABEQ) aiming at publishing papers reporting on basic and applied research and innovation in the field of chemical engineering and related areas.