Boundedness of the p-primary torsion of the Brauer group of an abelian variety

IF 1.3 1区 数学 Q1 MATHEMATICS
Marco D'Addezio
{"title":"Boundedness of the p-primary torsion of the Brauer group of an abelian variety","authors":"Marco D'Addezio","doi":"10.1112/s0010437x23007558","DOIUrl":null,"url":null,"abstract":"<p>We prove that the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175731172-0793:S0010437X23007558:S0010437X23007558_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$p^\\infty$</span></span></img></span></span>-torsion of the transcendental Brauer group of an abelian variety over a finitely generated field of characteristic <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175731172-0793:S0010437X23007558:S0010437X23007558_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$p&gt;0$</span></span></img></span></span> is bounded. This answers a (variant of a) question asked by Skorobogatov and Zarhin for abelian varieties. To do this, we prove a ‘flat Tate conjecture’ for divisors. We also study other geometric Galois-invariant <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175731172-0793:S0010437X23007558:S0010437X23007558_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$p^\\infty$</span></span></img></span></span>-torsion classes of the Brauer group which are not in the transcendental Brauer group. These classes, in contrast with our main theorem, can be infinitely <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175731172-0793:S0010437X23007558:S0010437X23007558_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span>-divisible. We explain how the existence of these <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175731172-0793:S0010437X23007558:S0010437X23007558_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span>-divisible towers is naturally related to the failure of surjectivity of specialisation morphisms of Néron–Severi groups in characteristic <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104175731172-0793:S0010437X23007558:S0010437X23007558_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span>.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"219 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x23007558","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that the Abstract Image$p^\infty$-torsion of the transcendental Brauer group of an abelian variety over a finitely generated field of characteristic Abstract Image$p>0$ is bounded. This answers a (variant of a) question asked by Skorobogatov and Zarhin for abelian varieties. To do this, we prove a ‘flat Tate conjecture’ for divisors. We also study other geometric Galois-invariant Abstract Image$p^\infty$-torsion classes of the Brauer group which are not in the transcendental Brauer group. These classes, in contrast with our main theorem, can be infinitely Abstract Image$p$-divisible. We explain how the existence of these Abstract Image$p$-divisible towers is naturally related to the failure of surjectivity of specialisation morphisms of Néron–Severi groups in characteristic Abstract Image$p$.

无常变的布劳尔群的 p 主扭转的有界性
我们证明了在特征 $p>0$ 的有限生成域上的无常变种的超越布劳尔群的 $p^\infty$-torsion 是有界的。这回答了斯科罗博加托夫(Skorobogatov)和扎尔欣(Zarhin)提出的一个关于无性变项的(变种)问题。为此,我们证明了除数的 "平泰特猜想"。我们还研究了布劳尔群中不在超越布劳尔群中的其他几何伽罗瓦不变$p^\infty$扭转类。与我们的主定理相反,这些类可以无限 $p$ 可分。我们解释了这些 $p$ 不可分塔的存在如何自然地与特征 $p$ 内伦-塞维里群的特殊化态射的失败相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信