High-order methods beyond the classical complexity bounds: inexact high-order proximal-point methods

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Masoud Ahookhosh, Yurii Nesterov
{"title":"High-order methods beyond the classical complexity bounds: inexact high-order proximal-point methods","authors":"Masoud Ahookhosh, Yurii Nesterov","doi":"10.1007/s10107-023-02041-4","DOIUrl":null,"url":null,"abstract":"<p>We introduce a <i>Bi-level OPTimization</i> (BiOPT) framework for minimizing the sum of two convex functions, where one of them is smooth enough. The BiOPT framework offers three levels of freedom: (i) choosing the order <i>p</i> of the proximal term; (ii) designing an inexact <i>p</i>th-order proximal-point method in the upper level; (iii) solving the auxiliary problem with a lower-level non-Euclidean method in the lower level. We here regularize the objective by a <span>\\((p+1)\\)</span>th-order proximal term (for arbitrary integer <span>\\(p\\ge 1\\)</span>) and then develop the generic inexact high-order proximal-point scheme and its acceleration using the standard estimating sequence technique at the upper level. This follows at the lower level with solving the corresponding <i>p</i>th-order proximal auxiliary problem inexactly either by one iteration of the <i>p</i>th-order tensor method or by a lower-order non-Euclidean composite gradient scheme. Ultimately, it is shown that applying the accelerated inexact <i>p</i>th-order proximal-point method at the upper level and handling the auxiliary problem by the non-Euclidean composite gradient scheme lead to a 2<i>q</i>-order method with the convergence rate <span>\\({\\mathcal {O}}(k^{-(p+1)})\\)</span> (for <span>\\(q=\\lfloor p/2\\rfloor \\)</span> and the iteration counter <i>k</i>), which can result to a superfast method for some specific class of problems.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-023-02041-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a Bi-level OPTimization (BiOPT) framework for minimizing the sum of two convex functions, where one of them is smooth enough. The BiOPT framework offers three levels of freedom: (i) choosing the order p of the proximal term; (ii) designing an inexact pth-order proximal-point method in the upper level; (iii) solving the auxiliary problem with a lower-level non-Euclidean method in the lower level. We here regularize the objective by a \((p+1)\)th-order proximal term (for arbitrary integer \(p\ge 1\)) and then develop the generic inexact high-order proximal-point scheme and its acceleration using the standard estimating sequence technique at the upper level. This follows at the lower level with solving the corresponding pth-order proximal auxiliary problem inexactly either by one iteration of the pth-order tensor method or by a lower-order non-Euclidean composite gradient scheme. Ultimately, it is shown that applying the accelerated inexact pth-order proximal-point method at the upper level and handling the auxiliary problem by the non-Euclidean composite gradient scheme lead to a 2q-order method with the convergence rate \({\mathcal {O}}(k^{-(p+1)})\) (for \(q=\lfloor p/2\rfloor \) and the iteration counter k), which can result to a superfast method for some specific class of problems.

Abstract Image

超越经典复杂性界限的高阶方法:非精确高阶近点法
我们引入了一个双层最优化(Bi-level OPTimization,BiOPT)框架,用于最小化两个凸函数之和,其中一个凸函数足够平滑。BiOPT 框架提供了三个层面的自由:(i) 选择近端项的阶数 p;(ii) 在上层设计一个不精确的 pth 阶近端点方法;(iii) 在下层用一个低阶非欧几里得方法解决辅助问题。在这里,我们通过一个((p+1)\th-order)近阶项(对于任意整数\(p\ge 1\))对目标进行正则化,然后在上层使用标准估计序列技术开发通用的非精确高阶近阶点方案及其加速。随后,在下层用 pth 阶张量法的一次迭代或低阶非欧几里得复合梯度方案精确求解相应的 pth 阶近点辅助问题。最终,研究表明,在上层应用加速的非精确pth阶近点法,并通过非欧几里得复合梯度方案处理辅助问题,可以得到收敛速率为({mathcal {O}}(k^{-(p+1)})\) (对于\(q=\lfloor p/2\rfloor \)和迭代次数为k)的2q阶方法,这可以为某些特定类别的问题带来超快的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信