{"title":"A note on the Diophantine equations 2ln2=1+q+⋯+qα and application to odd perfect numbers","authors":"Yoshinosuke Hirakawa","doi":"10.1016/j.indag.2023.12.004","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>N</mi></math></span> be an odd perfect number. Then, Euler proved that there exist some integers <span><math><mrow><mi>n</mi><mo>,</mo><mi>α</mi></mrow></math></span> and a prime <span><math><mi>q</mi></math></span> such that <span><math><mrow><mi>N</mi><mo>=</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span>, <span><math><mrow><mi>q</mi><mo>∤</mo><mi>n</mi></mrow></math></span>, and <span><math><mrow><mi>q</mi><mo>≡</mo><mi>α</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mo>mod</mo><mspace></mspace><mn>4</mn></mrow></math></span>. In this note, we prove that the ratio <span><math><mfrac><mrow><mi>σ</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow></mfrac></math></span> is neither a square nor a square times a single prime unless <span><math><mrow><mi>α</mi><mo>=</mo><mn>1</mn></mrow></math></span><span>. It is a direct consequence of a certain property of the Diophantine equation </span><span><math><mrow><mn>2</mn><mi>l</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>1</mn><mo>+</mo><mi>q</mi><mo>+</mo><mo>⋯</mo><mo>+</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span>, where <span><math><mi>l</mi></math></span><span> denotes one or a prime, and its proof is based on the prime ideal factorization in the quadratic orders </span><span><math><mrow><mi>Z</mi><mrow><mo>[</mo><msqrt><mrow><mn>1</mn><mo>−</mo><mi>q</mi></mrow></msqrt><mo>]</mo></mrow></mrow></math></span> and the primitive solutions of generalized Fermat equations <span><math><mrow><msup><mrow><mi>x</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>=</mo><mn>2</mn><msup><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>. We give also a slight generalization to odd multiply perfect numbers.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 2","pages":"Pages 282-287"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723001131","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be an odd perfect number. Then, Euler proved that there exist some integers and a prime such that , , and . In this note, we prove that the ratio is neither a square nor a square times a single prime unless . It is a direct consequence of a certain property of the Diophantine equation , where denotes one or a prime, and its proof is based on the prime ideal factorization in the quadratic orders and the primitive solutions of generalized Fermat equations . We give also a slight generalization to odd multiply perfect numbers.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.