Simplified Information Geometry Approach for Massive MIMO-OFDM Channel Estimation -- Part II: Convergence Analysis

Jiyuan Yang, Yan Chen, Mingrui Fan, Xiqi Gao, Xiang-Gen Xia, Dirk Slock
{"title":"Simplified Information Geometry Approach for Massive MIMO-OFDM Channel Estimation -- Part II: Convergence Analysis","authors":"Jiyuan Yang, Yan Chen, Mingrui Fan, Xiqi Gao, Xiang-Gen Xia, Dirk Slock","doi":"arxiv-2401.02037","DOIUrl":null,"url":null,"abstract":"In Part II of this two-part paper, we prove the convergence of the simplified\ninformation geometry approach (SIGA) proposed in Part I. For a general Bayesian\ninference problem, we first show that the iteration of the common second-order\nnatural parameter (SONP) is separated from that of the common first-order\nnatural parameter (FONP). Hence, the convergence of the common SONP can be\nchecked independently. We show that with the initialization satisfying a\nspecific but large range, the common SONP is convergent regardless of the value\nof the damping factor. For the common FONP, we establish a sufficient condition\nof its convergence and prove that the convergence of the common FONP relies on\nthe spectral radius of a particular matrix related to the damping factor. We\ngive the range of the damping factor that guarantees the convergence in the\nworst case. Further, we determine the range of the damping factor for massive\nMIMO-OFDM channel estimation by using the specific properties of the\nmeasurement matrices. Simulation results are provided to confirm the\ntheoretical results.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.02037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In Part II of this two-part paper, we prove the convergence of the simplified information geometry approach (SIGA) proposed in Part I. For a general Bayesian inference problem, we first show that the iteration of the common second-order natural parameter (SONP) is separated from that of the common first-order natural parameter (FONP). Hence, the convergence of the common SONP can be checked independently. We show that with the initialization satisfying a specific but large range, the common SONP is convergent regardless of the value of the damping factor. For the common FONP, we establish a sufficient condition of its convergence and prove that the convergence of the common FONP relies on the spectral radius of a particular matrix related to the damping factor. We give the range of the damping factor that guarantees the convergence in the worst case. Further, we determine the range of the damping factor for massive MIMO-OFDM channel estimation by using the specific properties of the measurement matrices. Simulation results are provided to confirm the theoretical results.
用于大规模 MIMO-OFDM 信道估计的简化信息几何方法 -- 第二部分:收敛性分析
对于一般的贝叶斯推理问题,我们首先证明了公共二阶自然参数(SONP)的迭代与公共一阶自然参数(FONP)的迭代是分离的。因此,可以独立检验公共 SONP 的收敛性。我们的研究表明,在初始化满足特定但较大范围的条件下,无论阻尼系数的值如何,公共 SONP 都是收敛的。对于普通 FONP,我们建立了其收敛的充分条件,并证明普通 FONP 的收敛依赖于与阻尼因子相关的特定矩阵的谱半径。我们给出了在最坏情况下保证收敛的阻尼系数范围。此外,我们还利用主题测量矩阵的特定属性,确定了用于大规模 MIMO-OFDM 信道估计的阻尼系数范围。仿真结果证实了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信