Coarsening Natural Deduction Proofs I: Finding Perfect Proofs

IF 0.7 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Ethan Brauer
{"title":"Coarsening Natural Deduction Proofs I: Finding Perfect Proofs","authors":"Ethan Brauer","doi":"10.1093/logcom/exad077","DOIUrl":null,"url":null,"abstract":"This paper explores how, given a proof, we can systematically transform it into a proof that contains no irrelevancies and which is as strong as possible. I define a weaker and stronger notion of what counts as a proof with no irrelevancies, calling them perfect proofs and gaunt proofs, respectively. Using classical core logic to study classical validities and core logic to study intuitionistic validities, I show that every core proof or classical core proof can be transformed into a perfect proof. In a sequel paper, I show how proofs in core logic can also be transformed into gaunt proofs and I observe that this property fails for classical core logic.","PeriodicalId":50162,"journal":{"name":"Journal of Logic and Computation","volume":"100 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Logic and Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1093/logcom/exad077","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores how, given a proof, we can systematically transform it into a proof that contains no irrelevancies and which is as strong as possible. I define a weaker and stronger notion of what counts as a proof with no irrelevancies, calling them perfect proofs and gaunt proofs, respectively. Using classical core logic to study classical validities and core logic to study intuitionistic validities, I show that every core proof or classical core proof can be transformed into a perfect proof. In a sequel paper, I show how proofs in core logic can also be transformed into gaunt proofs and I observe that this property fails for classical core logic.
粗化自然演绎证明 I:寻找完美证明
本文探讨了在给定一个证明的情况下,我们如何将其系统地转化为一个不含无关性且尽可能强的证明。我为没有无关性的证明定义了一个较弱和较强的概念,分别称之为完美证明和憔悴证明。我用经典核心逻辑研究经典有效性,用核心逻辑研究直观有效性,证明每个核心证明或经典核心证明都可以转化为完美证明。在续篇论文中,我说明了核心逻辑中的证明如何也能转化为憔悴证明,并观察到这一特性在经典核心逻辑中失效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Logic and Computation
Journal of Logic and Computation 工程技术-计算机:理论方法
CiteScore
1.90
自引率
14.30%
发文量
82
审稿时长
6-12 weeks
期刊介绍: Logic has found application in virtually all aspects of Information Technology, from software engineering and hardware to programming and artificial intelligence. Indeed, logic, artificial intelligence and theoretical computing are influencing each other to the extent that a new interdisciplinary area of Logic and Computation is emerging. The Journal of Logic and Computation aims to promote the growth of logic and computing, including, among others, the following areas of interest: Logical Systems, such as classical and non-classical logic, constructive logic, categorical logic, modal logic, type theory, feasible maths.... Logical issues in logic programming, knowledge-based systems and automated reasoning; logical issues in knowledge representation, such as non-monotonic reasoning and systems of knowledge and belief; logics and semantics of programming; specification and verification of programs and systems; applications of logic in hardware and VLSI, natural language, concurrent computation, planning, and databases. The bulk of the content is technical scientific papers, although letters, reviews, and discussions, as well as relevant conference reviews, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信