A note on b-generalized (α,β)-derivations in prime rings
Nripendu Bera, Basudeb Dhara
求助PDF
{"title":"A note on b-generalized (α,β)-derivations in prime rings","authors":"Nripendu Bera, Basudeb Dhara","doi":"10.1515/gmj-2023-2121","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>R</jats:italic> be a prime ring, let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>0</m:mn> <m:mo>≠</m:mo> <m:mi>b</m:mi> <m:mo>∈</m:mo> <m:mi>R</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2121_eq_0112.png\" /> <jats:tex-math>{0\\neq b\\in R}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and let α and β be two automorphisms of <jats:italic>R</jats:italic>. Suppose that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>F</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mi>R</m:mi> <m:mo>→</m:mo> <m:mi>R</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2121_eq_0147.png\" /> <jats:tex-math>{F:R\\rightarrow R}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>F</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>:</m:mo> <m:mrow> <m:mi>R</m:mi> <m:mo>→</m:mo> <m:mi>R</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2121_eq_0155.png\" /> <jats:tex-math>{F_{1}:R\\rightarrow R}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are two <jats:italic>b</jats:italic>-generalized <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2121_eq_0103.png\" /> <jats:tex-math>{(\\alpha,\\beta)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-derivations of <jats:italic>R</jats:italic> associated with the same <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2121_eq_0103.png\" /> <jats:tex-math>{(\\alpha,\\beta)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-derivation <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>d</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mi>R</m:mi> <m:mo>→</m:mo> <m:mi>R</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2121_eq_0098.png\" /> <jats:tex-math>d:R\\rightarrow R</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>G</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mi>R</m:mi> <m:mo>→</m:mo> <m:mi>R</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2121_eq_0092.png\" /> <jats:tex-math>G:R\\rightarrow R</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a <jats:italic>b</jats:italic>-generalized <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2121_eq_0087.png\" /> <jats:tex-math>(\\alpha,\\beta)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-derivation of <jats:italic>R</jats:italic> associated with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2121_eq_0087.png\" /> <jats:tex-math>(\\alpha,\\beta)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-derivation <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>g</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mi>R</m:mi> <m:mo>→</m:mo> <m:mi>R</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2121_eq_0099.png\" /> <jats:tex-math>g:R\\rightarrow R</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The main objective of this paper is to investigate the following algebraic identities: <jats:list list-type=\"custom\"> <jats:list-item> <jats:label>(1)</jats:label> <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mi>F</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>α</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>α</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>y</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2121_eq_0131.png\" /> <jats:tex-math>{F(xy)+\\alpha(xy)+\\alpha(yx)=0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, </jats:list-item> <jats:list-item> <jats:label>(2)</jats:label> <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mi>F</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>G</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:mi>α</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>α</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>y</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2121_eq_0129.png\" /> <jats:tex-math>{F(xy)+G(x)\\alpha(y)+\\alpha(yx)=0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, </jats:list-item> <jats:list-item> <jats:label>(3)</jats:label> <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mi>F</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>G</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>y</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>α</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>α</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>y</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2121_eq_0130.png\" /> <jats:tex-math>{F(xy)+G(yx)+\\alpha(xy)+\\alpha(yx)=0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, </jats:list-item> <jats:list-item> <jats:label>(4)</jats:label> <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mi>F</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:mi>F</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>G</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:mi>α</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>α</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>y</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2121_eq_0123.png\" /> <jats:tex-math>{F(x)F(y)+G(x)\\alpha(y)+\\alpha(yx)=0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, </jats:list-item> <jats:list-item> <jats:label>(5)</jats:label> <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mi>F</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>d</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:msub> <m:mi>F</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>α</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2121_eq_0133.png\" /> <jats:tex-math>{F(xy)+d(x)F_{1}(y)+\\alpha(xy)=0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, </jats:list-item> <jats:list-item> <jats:label>(6)</jats:label> <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mi>F</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>d</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:msub> <m:mi>F</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2121_eq_0136.png\" /> <jats:tex-math>{F(xy)+d(x)F_{1}(y)=0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, </jats:list-item> <jats:list-item> <jats:label>(7)</jats:label> <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mi>F</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>d</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:msub> <m:mi>F</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>α</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>y</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2121_eq_0135.png\" /> <jats:tex-math>{F(xy)+d(x)F_{1}(y)+\\alpha(yx)=0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, </jats:list-item> <jats:list-item> <jats:label>(8)</jats:label> <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mi>F</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>d</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:msub> <m:mi>F</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>α</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>α</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>y</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2121_eq_0132.png\" /> <jats:tex-math>{F(xy)+d(x)F_{1}(y)+\\alpha(xy)+\\alpha(yx)=0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, </jats:list-item> <jats:list-item> <jats:label>(9)</jats:label> <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:mi>F</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>d</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:msub> <m:mi>F</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>α</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>y</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>-</m:mo> <m:mrow> <m:mi>α</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2121_eq_0134.png\" /> <jats:tex-math>{F(xy)+d(x)F_{1}(y)+\\alpha(yx)-\\alpha(xy)=0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, </jats:list-item> <jats:list-item> <jats:label>(10)</jats:label> <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mrow> <m:mi>F</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>,</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2121_eq_0191.png\" /> <jats:tex-math>{[F(x),x]_{\\alpha,\\beta}=0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, </jats:list-item> <jats:list-item> <jats:label>(11)</jats:label> <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mrow> <m:mi>F</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>∘</m:mo> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2121_eq_0101.png\" /> <jats:tex-math>{(F(x)\\circ x)_{\\alpha,\\beta}=0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, </jats:list-item> <jats:list-item> <jats:label>(12)</jats:label> <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>F</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2121_eq_0116.png\" /> <jats:tex-math>{F([x,y])=[x,y]_{\\alpha,\\beta}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, </jats:list-item> <jats:list-item> <jats:label>(13)</jats:label> <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>F</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>∘</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>∘</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2121_eq_0128.png\" /> <jats:tex-math>{F(x\\circ y)=(x\\circ y)_{\\alpha,\\beta}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> </jats:list-item> </jats:list> for all <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2121_eq_0333.png\" /> <jats:tex-math>{x,y}</jats:tex-math> </jats:alternatives> </jats:inline-formula> in some suitable subset of <jats:italic>R</jats:italic>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
Let R be a prime ring, let 0 ≠ b ∈ R {0\neq b\in R} , and let α and β be two automorphisms of R . Suppose that F : R → R {F:R\rightarrow R} , F 1 : R → R {F_{1}:R\rightarrow R} are two b -generalized ( α , β ) {(\alpha,\beta)} -derivations of R associated with the same ( α , β ) {(\alpha,\beta)} -derivation d : R → R d:R\rightarrow R , and let G : R → R G:R\rightarrow R be a b -generalized ( α , β ) (\alpha,\beta) -derivation of R associated with ( α , β ) (\alpha,\beta) -derivation g : R → R g:R\rightarrow R . The main objective of this paper is to investigate the following algebraic identities: (1) F ( x y ) + α ( x y ) + α ( y x ) = 0 {F(xy)+\alpha(xy)+\alpha(yx)=0} , (2) F ( x y ) + G ( x ) α ( y ) + α ( y x ) = 0 {F(xy)+G(x)\alpha(y)+\alpha(yx)=0} , (3) F ( x y ) + G ( y x ) + α ( x y ) + α ( y x ) = 0 {F(xy)+G(yx)+\alpha(xy)+\alpha(yx)=0} , (4) F ( x ) F ( y ) + G ( x ) α ( y ) + α ( y x ) = 0 {F(x)F(y)+G(x)\alpha(y)+\alpha(yx)=0} , (5) F ( x y ) + d ( x ) F 1 ( y ) + α ( x y ) = 0 {F(xy)+d(x)F_{1}(y)+\alpha(xy)=0} , (6) F ( x y ) + d ( x ) F 1 ( y ) = 0 {F(xy)+d(x)F_{1}(y)=0} , (7) F ( x y ) + d ( x ) F 1 ( y ) + α ( y x ) = 0 {F(xy)+d(x)F_{1}(y)+\alpha(yx)=0} , (8) F ( x y ) + d ( x ) F 1 ( y ) + α ( x y ) + α ( y x ) = 0 {F(xy)+d(x)F_{1}(y)+\alpha(xy)+\alpha(yx)=0} , (9) F ( x y ) + d ( x ) F 1 ( y ) + α ( y x ) - α ( x y ) = 0 {F(xy)+d(x)F_{1}(y)+\alpha(yx)-\alpha(xy)=0} , (10) [ F ( x ) , x ] α , β = 0 {[F(x),x]_{\alpha,\beta}=0} , (11) ( F ( x ) ∘ x ) α , β = 0 {(F(x)\circ x)_{\alpha,\beta}=0} , (12) F ( [ x , y ] ) = [ x , y ] α , β {F([x,y])=[x,y]_{\alpha,\beta}} , (13) F ( x ∘ y ) = ( x ∘ y ) α , β {F(x\circ y)=(x\circ y)_{\alpha,\beta}} for all x , y {x,y} in some suitable subset of R .
关于素环中 b 广义 (α,β)-derivations 的说明
设 R 是素环,设 0≠b∈R {0\neq b\in R} ,设 α 和 β 是 R 的两个自变量。 假设 F : R → R {F:R\rightarrow R} , F 1 : R → R {F_{1}:R\rightarrow R} 是 R 的两个自变量。 , F 1 : R → R {F_{1}:R\rightarrow R} 是 R 的两个 b-generalized ( α , β ) {(\alpha,\beta)} -derivation ,与同一个 ( α , β ) {(\alpha,\beta)} -derivation d 相关联: R → R d:R\rightarrow R ,让 G : R → R G:R\rightarrow R 是 R 的一个 b-generalized ( α , β ) (\alpha,\beta) -derivation ,与 ( α , β ) (\alpha,\beta) -derivation g 相关联: R → R g:R\rightarrow R 。本文的主要目的是研究以下代数等式:(1) F ( x y ) + α ( x y ) + α ( y x ) = 0 {F(xy)+\alpha(xy)+\alpha(yx)=0} ,(2) F ( x y ) + α ( x y ) + α ( y x ) = 0 {F(xy)+\alpha(xy)+\alpha(yx)=0} 。 (2) F ( x y ) + G ( x ) α ( y ) + α ( y x ) = 0 {F(xy)+G(x)\alpha(y)+\alpha(yx)=0} (3) F ( x y ) + G ( y x ) + α ( x y ) + α ( y x ) = 0 {F(xy)+G(yx)+\alpha(xy)+\alpha(yx)=0} , (4) F ( x ) + G ( x ) + α ( y x ) = 0 {F(xy)+G(x)+\alpha(yx)=0} (4) F ( x ) F ( y ) + G ( x ) α ( y ) + α ( y x ) = 0 {F(x)F(y)+G(x)\alpha(y)+\alpha(yx)=0} , (5) F ( x y ) + G ( yx ) + α ( y x ) = 0 {F(x)F(y)+G(x)\alpha(yx)=0} (5) F ( x y ) + d ( x ) F 1 ( y ) + α ( x y ) = 0 {F(xy)+d(x)F_{1}(y)+\alpha(xy)=0} (6) F ( x y ) + d ( x ) F 1 ( y ) = 0 {F(xy)+d(x)F_{1}(y)=0} , (7) F ( x y ) + d ( x ) F 1 ( y ) = 0 {F(xy)+d(x)F_{1}(y)=0} (7) F ( x y ) + d ( x ) F 1 ( y ) + α ( y x ) = 0 {F(xy)+d(x)F_{1}(y)+\alpha(yx)=0} , (8) F ( x y ) + d ( x ) F 1 ( y ) = 0 {F(xy)+d(x)F_{1}(y)+\alpha(yx)=0} (8) F ( x y ) + d ( x ) F 1 ( y ) + α ( x y ) + α ( y x ) = 0 {F(xy)+d(x)F_{1}(y)+\alpha(xy)+\alpha(yx)=0} , (9) F ( x y ) + d ( x ) F 1 ( y ) + α ( y x ) = 0 {F(xy)+d(x)F_{1}(y)+\alpha(yx)=0} (9) F ( x y ) + d ( x ) F 1 ( y ) + α ( y x ) - α ( x y ) = 0 {F(xy)+d(x)F_{1}(y)+\alpha(yx)-\alpha(xy)=0} , (10) [ F ( x y ) +d(x)F_{1}(y)+\alpha(yx)-\alpha(xy)=0} (10) [ F ( x ) , x ] α , β = 0 {[F(x),x]_{\alpha,\beta}=0} , (11) ( F ( x ) , x ] α , β = 0 {[F(x),x]_{\alpha,\beta}=0} (11) ( F ( x ) ∘ x ) α , β = 0 {(F(x)\circ x)_{\alpha,\beta}=0} , (12) F ( [ x ] α , β = 0 {[F(x)\circ x]_{alpha,\beta}=0} (12) F ( [ x , y ] ) = [ x , y ] α , β {F([x,y])=[x,y]_{\alpha,\beta}} (13) F ( x ∘ y ) = ( x ∘ y ) α , β {F(x\circ y)=(x\circ y)_{\alpha,\beta}} for all x , y {x,y} in some suitable subset of R.
本文章由计算机程序翻译,如有差异,请以英文原文为准。