Hamiltonian systems involving exponential growth in $${\mathbb {R}}^{2}$$ with general nonlinearities

Uberlandio B. Severo, Manassés de Souza, Marta Menezes
{"title":"Hamiltonian systems involving exponential growth in $${\\mathbb {R}}^{2}$$ with general nonlinearities","authors":"Uberlandio B. Severo, Manassés de Souza, Marta Menezes","doi":"10.1007/s13398-023-01542-3","DOIUrl":null,"url":null,"abstract":"<p>In this work, we establish the existence of ground state solution for Hamiltonian systems of the form </p><span>$$\\begin{aligned} \\left\\{ \\begin{aligned} -\\Delta u + V(x)u = H_v(x,u,v), \\quad x \\in {\\mathbb {R}}^2, \\\\ -\\Delta v + V(x)v = H_u(x,u,v), \\quad x \\in {\\mathbb {R}}^2, \\end{aligned} \\right. \\end{aligned}$$</span><p>where <span>\\(V \\in C({\\mathbb {R}}^2, (0, \\infty ))\\)</span> and <span>\\(H \\in C^1({\\mathbb {R}}^2 \\times {\\mathbb {R}}^2, {\\mathbb {R}})\\)</span> is allowed to have an exponential growth with respect to the Trudinger–Moser inequality. We study the case where <i>V</i> and <i>H</i> are periodic or asymptotically periodic. In the proof of the main results, we have used a reduction method involving the generalized Nehari manifold and also a linking theorem. In our approach, as we deal with general nonlinearities, it was necessary to obtain a new version of the Trudinger–Moser inequality.</p>","PeriodicalId":21293,"journal":{"name":"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13398-023-01542-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we establish the existence of ground state solution for Hamiltonian systems of the form

$$\begin{aligned} \left\{ \begin{aligned} -\Delta u + V(x)u = H_v(x,u,v), \quad x \in {\mathbb {R}}^2, \\ -\Delta v + V(x)v = H_u(x,u,v), \quad x \in {\mathbb {R}}^2, \end{aligned} \right. \end{aligned}$$

where \(V \in C({\mathbb {R}}^2, (0, \infty ))\) and \(H \in C^1({\mathbb {R}}^2 \times {\mathbb {R}}^2, {\mathbb {R}})\) is allowed to have an exponential growth with respect to the Trudinger–Moser inequality. We study the case where V and H are periodic or asymptotically periodic. In the proof of the main results, we have used a reduction method involving the generalized Nehari manifold and also a linking theorem. In our approach, as we deal with general nonlinearities, it was necessary to obtain a new version of the Trudinger–Moser inequality.

涉及 $${mathbb {R}}^{2}$ 中指数增长且具有一般非线性的哈密顿系统
在这项工作中,我们为形式为 $$\begin{aligned} -\Delta u + V(x)u = H_v(x,u,v) 的哈密顿系统建立了基态解的存在性。-Delta u + V(x)u = H_v(x,u,v), quad x in {\mathbb {R}}^2, \\ -Delta v + V(x)v = H_u(x,u,v), quad x in {\mathbb {R}}^2, \end{aligned}.\对\end{aligned}$ 其中(V 在 C({\mathbb {R}}^2, (0, \infty ))\) 和(H 在 C^1({\mathbb {R}}^2 \times {\mathbb {R}}^2, {\mathbb {R}})\) 允许与特鲁丁格-莫泽不等式有关的指数增长。我们研究了 V 和 H 为周期性或渐近周期性的情况。在主要结果的证明过程中,我们使用了涉及广义奈哈里流形的还原方法和链接定理。在我们的方法中,由于我们处理的是一般非线性问题,因此有必要获得新版本的特鲁丁格-莫泽不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信