On the Wiener chaos expansion of the signature of a Gaussian process

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
Thomas Cass, Emilio Ferrucci
{"title":"On the Wiener chaos expansion of the signature of a Gaussian process","authors":"Thomas Cass, Emilio Ferrucci","doi":"10.1007/s00440-023-01255-z","DOIUrl":null,"url":null,"abstract":"<p>We compute the Wiener chaos decomposition of the signature for a class of Gaussian processes, which contains fractional Brownian motion (fBm) with Hurst parameter <span>\\(H \\in (1/4,1)\\)</span>. At level 0, our result yields an expression for the expected signature of such processes, which determines their law (Chevyrev and Lyons in Ann Probab 44(6):4049–4082, 2016). In particular, this formula simultaneously extends both the one for <span>\\(1/2 &lt; H\\)</span>-fBm (Baudoin and Coutin in Stochast Process Appl 117(5):550–574, 2007) and the one for Brownian motion (<span>\\(H = 1/2\\)</span>) (Fawcett 2003), to the general case <span>\\(H &gt; 1/4\\)</span>, thereby resolving an established open problem. Other processes studied include continuous and centred Gaussian semimartingales.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"10 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-023-01255-z","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We compute the Wiener chaos decomposition of the signature for a class of Gaussian processes, which contains fractional Brownian motion (fBm) with Hurst parameter \(H \in (1/4,1)\). At level 0, our result yields an expression for the expected signature of such processes, which determines their law (Chevyrev and Lyons in Ann Probab 44(6):4049–4082, 2016). In particular, this formula simultaneously extends both the one for \(1/2 < H\)-fBm (Baudoin and Coutin in Stochast Process Appl 117(5):550–574, 2007) and the one for Brownian motion (\(H = 1/2\)) (Fawcett 2003), to the general case \(H > 1/4\), thereby resolving an established open problem. Other processes studied include continuous and centred Gaussian semimartingales.

Abstract Image

论高斯过程特征的维纳混沌扩展
我们计算了一类高斯过程签名的维纳混沌分解,其中包含具有赫斯特参数(H \ in (1/4,1)\)的分数布朗运动(fBm)。在第 0 层,我们的结果产生了这类过程的预期签名表达式,这决定了它们的规律(Chevyrev 和 Lyons 在 Ann Probab 44(6):4049-4082, 2016 中)。特别是,这个公式同时将 \(1/2 < H\)-fBm (Baudoin 和 Coutin 在 Stochast Process Appl 117(5):550-574, 2007)和布朗运动(\(H = 1/2\) )(Fawcett 2003)的公式扩展到一般情况下的\(H > 1/4\) ,从而解决了一个既定的开放问题。研究的其他过程包括连续高斯半成型过程和中心高斯半成型过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信