Non-formality of Voronov’s Swiss-Cheese operads

IF 0.6 4区 数学 Q3 MATHEMATICS
Najib Idrissi, Renato Vasconcellos Vieira
{"title":"Non-formality of Voronov’s Swiss-Cheese operads","authors":"Najib Idrissi, Renato Vasconcellos Vieira","doi":"10.1093/qmath/haad041","DOIUrl":null,"url":null,"abstract":"The Swiss-Cheese operads, which encode actions of algebras over the little n-cubes operad on algebras over the little $(n-1)$-cubes operad, comes in several variants. We prove that the variant in which open operations must have at least one open input is not formal in characteristic zero. This is slightly stronger than earlier results of Livernet and Willwacher. The obstruction to formality that we find lies in arity $(2, 2^n)$, rather than $(2, 0)$ (Livernet) or $(4, 0)$ (Willwacher).","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"20 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/qmath/haad041","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Swiss-Cheese operads, which encode actions of algebras over the little n-cubes operad on algebras over the little $(n-1)$-cubes operad, comes in several variants. We prove that the variant in which open operations must have at least one open input is not formal in characteristic zero. This is slightly stronger than earlier results of Livernet and Willwacher. The obstruction to formality that we find lies in arity $(2, 2^n)$, rather than $(2, 0)$ (Livernet) or $(4, 0)$ (Willwacher).
沃罗诺夫瑞士奶酪操作数的非形式性
瑞士奶酪操作数是小 n 立方操作数上的数组对小 $(n-1)$ 立方操作数上的数组的作用的编码,它有几种变体。我们证明,开放运算必须至少有一个开放输入的变体在零特征中不是形式的。这比 Livernet 和 Willwacher 早期的结果稍强。我们发现,形式化的障碍在于元数$(2, 2^n)$,而不是$(2, 0)$ (Livernet) 或 $(4, 0)$ (Willwacher)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信