Differential Harnack inequalities via Concavity of the arrival time

IF 0.7 4区 数学 Q2 MATHEMATICS
Theodora Bourni, Mat Langford
{"title":"Differential Harnack inequalities via Concavity of the arrival time","authors":"Theodora Bourni, Mat Langford","doi":"10.4310/cag.2023.v31.n3.a1","DOIUrl":null,"url":null,"abstract":"We present a simple connection between differential Harnack inequalities for hypersurface flows and natural concavity properties of their time-of-arrival functions. We prove these concavity properties directly for a large class of flows by applying a concavity maximum principle argument to the corresponding level set flow equations. In particular, this yields a short proof of Hamilton’s differential Harnack inequality for mean curvature flow and, more generally, Andrews’ differential Harnack inequalities for certain “$\\alpha$- inverse-concave” flows.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"21 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n3.a1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a simple connection between differential Harnack inequalities for hypersurface flows and natural concavity properties of their time-of-arrival functions. We prove these concavity properties directly for a large class of flows by applying a concavity maximum principle argument to the corresponding level set flow equations. In particular, this yields a short proof of Hamilton’s differential Harnack inequality for mean curvature flow and, more generally, Andrews’ differential Harnack inequalities for certain “$\alpha$- inverse-concave” flows.
通过到达时间的协和性实现差分哈纳克不等式
我们提出了超曲面流的微分哈纳克不等式与其到达时间函数的自然凹性之间的简单联系。通过对相应的水平集流方程应用凹性最大原则论证,我们直接证明了一大类流的这些凹性性质。特别是,这产生了平均曲率流的汉密尔顿微分哈纳克不等式的简短证明,以及更一般的某些"$\alpha$-反凹 "流的安德鲁斯微分哈纳克不等式的简短证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信