Embedded totally geodesic surfaces in fully augmented links

IF 0.7 4区 数学 Q2 MATHEMATICS
Sierra Knavel, Rolland Trapp
{"title":"Embedded totally geodesic surfaces in fully augmented links","authors":"Sierra Knavel, Rolland Trapp","doi":"10.4310/cag.2023.v31.n3.a2","DOIUrl":null,"url":null,"abstract":"This paper studies embedded totally geodesic surfaces in fully augmented link complements. Not surprisingly, there are no closed embedded totally geodesic surfaces. Non-compact surfaces disjoint from crossing disks are seen to be punctured spheres orthogonal to the standard cell decomposition, while those that intersect crossing disks do so in very restricted ways. Finally we show there is an augmentation of any checkerboard surface in which that surface becomes totally geodesic.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"23 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n3.a2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies embedded totally geodesic surfaces in fully augmented link complements. Not surprisingly, there are no closed embedded totally geodesic surfaces. Non-compact surfaces disjoint from crossing disks are seen to be punctured spheres orthogonal to the standard cell decomposition, while those that intersect crossing disks do so in very restricted ways. Finally we show there is an augmentation of any checkerboard surface in which that surface becomes totally geodesic.
全增强链路中的嵌入式完全大地曲面
本文研究全增强链接补集中的内嵌全大地曲面。不足为奇的是,不存在封闭的内嵌全大地曲面。与交叉盘不相交的非紧凑曲面被视为与标准单元分解正交的点状球面,而与交叉盘相交的曲面则以非常有限的方式相交。最后,我们证明了任何棋盘曲面都有一个增量,在这个增量中,该曲面成为完全测地曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信