Cohomogeneity one Ricci solitons from Hopf fibrations

IF 0.7 4区 数学 Q2 MATHEMATICS
Matthias Wink
{"title":"Cohomogeneity one Ricci solitons from Hopf fibrations","authors":"Matthias Wink","doi":"10.4310/cag.2023.v31.n3.a4","DOIUrl":null,"url":null,"abstract":"This paper studies cohomogeneity one Ricci solitons. If the isotropy representation of the principal orbit $G/K$ consists of two inequivalent $\\operatorname{Ad}_K$-invariant irreducible summands, the existence of continuous families of non-homothetic complete steady and expanding Ricci solitons on non-trivial bundles is shown. These examples were detected numerically by Buzano–Dancer–Gallaugher–Wang. The analysis of the corresponding Ricci flat trajectories is used to reconstruct Einstein metrics of positive scalar curvature due to Böhm. The techniques also apply to $m$-quasi-Einstein metrics.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"17 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n3.a4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies cohomogeneity one Ricci solitons. If the isotropy representation of the principal orbit $G/K$ consists of two inequivalent $\operatorname{Ad}_K$-invariant irreducible summands, the existence of continuous families of non-homothetic complete steady and expanding Ricci solitons on non-trivial bundles is shown. These examples were detected numerically by Buzano–Dancer–Gallaugher–Wang. The analysis of the corresponding Ricci flat trajectories is used to reconstruct Einstein metrics of positive scalar curvature due to Böhm. The techniques also apply to $m$-quasi-Einstein metrics.
来自霍普夫纤维的同构一利玛窦孤子
本文研究同质性一里奇孤子。如果主轨道 $G/K$ 的各向同性表示由两个不等价的 $\operatorname{Ad}_K$ 不变的不可还原和子组成,则表明在非三维束上存在连续的非同调完全稳定和膨胀里奇孤子族。这些例子是由 Buzano-Dancer-Gallaugher-Wang 用数值方法探测到的。对相应的利玛窦平坦轨迹的分析被用来重建伯姆(Böhm)提出的正标量曲率的爱因斯坦度量。这些技术也适用于$m$-准爱因斯坦度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信