{"title":"Bayesian minimum aberration mixed-level split-plot designs","authors":"Hui Li, Min-Qian Liu, Jinyu Yang","doi":"10.1007/s00184-023-00937-x","DOIUrl":null,"url":null,"abstract":"<p>Many industrial experiments involve factors with levels more difficult to change or control than others, which leads to the development of two-level fractional factorial split-plot (FFSP) designs. Recently, mixed-level FFSP designs were proposed due to the requirement of different-level factors. In this paper, we generalize the Bayesian optimal criterion for mixed two- and four-level FFSP designs, and then provide Bayesian minimum aberration (MA) criterion to rank FFSP designs. Bayesian MA criterion can give a natural ordering for the effects involving two-level factors and three components of a four-level factor. We also discuss the relationship between the Bayesian optimal and Bayesian MA criteria. Furthermore, we consider the designs with both qualitative and quantitative factors.</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":"17 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-023-00937-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Many industrial experiments involve factors with levels more difficult to change or control than others, which leads to the development of two-level fractional factorial split-plot (FFSP) designs. Recently, mixed-level FFSP designs were proposed due to the requirement of different-level factors. In this paper, we generalize the Bayesian optimal criterion for mixed two- and four-level FFSP designs, and then provide Bayesian minimum aberration (MA) criterion to rank FFSP designs. Bayesian MA criterion can give a natural ordering for the effects involving two-level factors and three components of a four-level factor. We also discuss the relationship between the Bayesian optimal and Bayesian MA criteria. Furthermore, we consider the designs with both qualitative and quantitative factors.
期刊介绍:
Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.