Effect of local fractional derivatives on Riemann curvature tensor

Muhittin Evren Aydin
{"title":"Effect of local fractional derivatives on Riemann curvature tensor","authors":"Muhittin Evren Aydin","doi":"10.1016/j.exco.2023.100134","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we give a main example indicating the ineffectiveness of the local fractional derivatives on the Riemann curvature tensor that is a common tool in calculating curvature of a Riemannian manifold. For this, first we introduce a general local fractional derivative operator that involves the mostly used ones in the literature as conformable, alternative, truncated <span><math><mrow><mi>M</mi><mo>−</mo></mrow></math></span> and <span><math><mrow><mi>V</mi><mo>−</mo></mrow></math></span>fractional derivatives. Then, according to this general operator, a particular Riemannian metric on the real affine space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> that is different from the Euclidean one is defined. In conclusion, our main example states that the Riemann curvature tensor of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> endowed with this particular metric is identically 0, that is, one is locally isometric to Euclidean space.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100134"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X23000368/pdfft?md5=cdf1658da9063967d38270f28537f406&pid=1-s2.0-S2666657X23000368-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X23000368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we give a main example indicating the ineffectiveness of the local fractional derivatives on the Riemann curvature tensor that is a common tool in calculating curvature of a Riemannian manifold. For this, first we introduce a general local fractional derivative operator that involves the mostly used ones in the literature as conformable, alternative, truncated M and Vfractional derivatives. Then, according to this general operator, a particular Riemannian metric on the real affine space Rn that is different from the Euclidean one is defined. In conclusion, our main example states that the Riemann curvature tensor of Rn endowed with this particular metric is identically 0, that is, one is locally isometric to Euclidean space.

局部分数导数对黎曼曲率张量的影响
在本文中,我们举了一个主要例子,说明黎曼曲率张量上的局部分数导数的无效性,而黎曼曲率张量是计算黎曼流形曲率的常用工具。为此,我们首先引入了一个通用的局部分数导数算子,其中包括文献中常用的保形导数、替代导数、截断 M 分数导数和 V 分数导数。然后,根据这个一般算子,定义了实仿射空间 Rn 上不同于欧几里得空间的特定黎曼度量。总之,我们的主要示例表明,Rn 的黎曼曲率张量与这个特殊度量同为 0,也就是说,它与欧几里得空间局部等距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信