Carl Remlinger , Clémence Alasseur , Marie Brière , Joseph Mikael
{"title":"Expert aggregation for financial forecasting","authors":"Carl Remlinger , Clémence Alasseur , Marie Brière , Joseph Mikael","doi":"10.1016/j.jfds.2023.100108","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning algorithms dedicated to financial time series forecasting have gained a lot of interest. But choosing between several algorithms can be challenging, as their estimation accuracy may be unstable over time. Online aggregation of experts combine the forecasts of a finite set of models in a single approach without making any assumption about the models. In this paper, a Bernstein Online Aggregation (BOA) procedure is applied to the construction of long-short strategies built from individual stock return forecasts coming from different machine learning models. The online mixture of experts leads to attractive portfolio performances even in non-stationary environments. The inclusion of neural networks experts in the aggregation contributes to a better average return, while Ordinary Least Squares with Huber Loss experts contribute to lower risk. The aggregation outperforms individual algorithms, offering a higher portfolio Sharpe ratio, lower shortfall, with a similar turnover. Extensions to expert and aggregation specialisations are also proposed to improve the overall mixture on a family of portfolio evaluation metrics.</p></div>","PeriodicalId":36340,"journal":{"name":"Journal of Finance and Data Science","volume":"9 ","pages":"Article 100108"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405918823000247/pdfft?md5=65d3b507a8c88e3a7a8f29685f31fdb9&pid=1-s2.0-S2405918823000247-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405918823000247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning algorithms dedicated to financial time series forecasting have gained a lot of interest. But choosing between several algorithms can be challenging, as their estimation accuracy may be unstable over time. Online aggregation of experts combine the forecasts of a finite set of models in a single approach without making any assumption about the models. In this paper, a Bernstein Online Aggregation (BOA) procedure is applied to the construction of long-short strategies built from individual stock return forecasts coming from different machine learning models. The online mixture of experts leads to attractive portfolio performances even in non-stationary environments. The inclusion of neural networks experts in the aggregation contributes to a better average return, while Ordinary Least Squares with Huber Loss experts contribute to lower risk. The aggregation outperforms individual algorithms, offering a higher portfolio Sharpe ratio, lower shortfall, with a similar turnover. Extensions to expert and aggregation specialisations are also proposed to improve the overall mixture on a family of portfolio evaluation metrics.