Mikkel Thor Olsen, Carina Kirstine Klarskov, Arnold Matovu Dungu, Katrine Bagge Hansen, Ulrik Pedersen-Bjergaard, Peter Lommer Kristensen
{"title":"Statistical Packages and Algorithms for the Analysis of Continuous Glucose Monitoring Data: A Systematic Review.","authors":"Mikkel Thor Olsen, Carina Kirstine Klarskov, Arnold Matovu Dungu, Katrine Bagge Hansen, Ulrik Pedersen-Bjergaard, Peter Lommer Kristensen","doi":"10.1177/19322968231221803","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Continuous glucose monitoring (CGM) measures glucose levels every 1 to 15 minutes and is widely used in clinical and research contexts. Statistical packages and algorithms reduce the time-consuming and error-prone process of manually calculating CGM metrics and contribute to standardizing CGM metrics defined by international consensus. The aim of this systematic review is to summarize existing data on (1) statistical <i>packages</i> for retrospective CGM data analysis and (2) statistical <i>algorithms</i> for retrospective CGM analysis not available in these statistical packages.</p><p><strong>Methods: </strong>A systematic literature search in PubMed and EMBASE was conducted on September 19, 2023. We also searched Google Scholar and Google Search until October 12, 2023 as sources of gray literature and performed reference checks of the included literature. Articles in English and Danish were included. This systematic review is registered with PROSPERO (CRD42022378163).</p><p><strong>Results: </strong>A total of 8731 references were screened and 46 references were included. We identified 23 statistical packages for the analysis of CGM data. The statistical packages could calculate many metrics of the 2022 CGM consensus and non-consensus CGM metrics, and 22/23 (96%) statistical packages were freely available. Also, 23 statistical algorithms were identified. The statistical algorithms could be divided into three groups based on content: (1) CGM data reduction (eg, clustering of CGM data), (2) composite CGM outcomes, and (3) other CGM metrics.</p><p><strong>Conclusion: </strong>This systematic review provides detailed tabular and textual up-to-date descriptions of the contents of statistical packages and statistical algorithms for retrospective analysis of CGM data.</p>","PeriodicalId":15475,"journal":{"name":"Journal of Diabetes Science and Technology","volume":" ","pages":"787-809"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571786/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/19322968231221803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Continuous glucose monitoring (CGM) measures glucose levels every 1 to 15 minutes and is widely used in clinical and research contexts. Statistical packages and algorithms reduce the time-consuming and error-prone process of manually calculating CGM metrics and contribute to standardizing CGM metrics defined by international consensus. The aim of this systematic review is to summarize existing data on (1) statistical packages for retrospective CGM data analysis and (2) statistical algorithms for retrospective CGM analysis not available in these statistical packages.
Methods: A systematic literature search in PubMed and EMBASE was conducted on September 19, 2023. We also searched Google Scholar and Google Search until October 12, 2023 as sources of gray literature and performed reference checks of the included literature. Articles in English and Danish were included. This systematic review is registered with PROSPERO (CRD42022378163).
Results: A total of 8731 references were screened and 46 references were included. We identified 23 statistical packages for the analysis of CGM data. The statistical packages could calculate many metrics of the 2022 CGM consensus and non-consensus CGM metrics, and 22/23 (96%) statistical packages were freely available. Also, 23 statistical algorithms were identified. The statistical algorithms could be divided into three groups based on content: (1) CGM data reduction (eg, clustering of CGM data), (2) composite CGM outcomes, and (3) other CGM metrics.
Conclusion: This systematic review provides detailed tabular and textual up-to-date descriptions of the contents of statistical packages and statistical algorithms for retrospective analysis of CGM data.
期刊介绍:
The Journal of Diabetes Science and Technology (JDST) is a bi-monthly, peer-reviewed scientific journal published by the Diabetes Technology Society. JDST covers scientific and clinical aspects of diabetes technology including glucose monitoring, insulin and metabolic peptide delivery, the artificial pancreas, digital health, precision medicine, social media, cybersecurity, software for modeling, physiologic monitoring, technology for managing obesity, and diagnostic tests of glycation. The journal also covers the development and use of mobile applications and wireless communication, as well as bioengineered tools such as MEMS, new biomaterials, and nanotechnology to develop new sensors. Articles in JDST cover both basic research and clinical applications of technologies being developed to help people with diabetes.