Primitive Prime Divisors of Orders of Suzuki–Ree Groups

IF 0.4 3区 数学 Q4 LOGIC
M. A. Grechkoseeva
{"title":"Primitive Prime Divisors of Orders of Suzuki–Ree Groups","authors":"M. A. Grechkoseeva","doi":"10.1007/s10469-023-09722-1","DOIUrl":null,"url":null,"abstract":"<p>There is a well-known factorization of the number 2<sup>2<i>m</i></sup> + 1<i>,</i> with m odd, related to the orders of tori of simple Suzuki groups: 2<sup>2<i>m</i></sup> +1 is a product of <i>a</i> = 2<sup><i>m</i></sup> + 2<sup>(<i>m</i>+1)<i>/</i>2</sup> +1 and <i>b</i> = 2<sup><i>m</i></sup><i> −</i> 2<sup>(<i>m</i>+1)<i>/</i>2</sup> + 1. By the Bang–Zsigmondy theorem, there is a primitive prime divisor of 2<sup>4<i>m</i></sup><i> −</i> 1, that is, a prime r that divides 2<sup>4<i>m</i></sup> − 1 and does not divide 2<sup><i>i</i></sup><i> −</i> 1 for any 1 ≤ <i>i &lt;</i> 4<i>m.</i> It is easy to see that r divides 2<sup>2<i>m</i></sup> + 1, and so it divides one of the numbers <i>a</i> and <i>b.</i> It is proved that for every <i>m &gt;</i> 5, each of <i>a, b</i> is divisible by some primitive prime divisor of 2<sup>4<i>m</i></sup><i> −</i> 1. Similar results are obtained for primitive prime divisors related to the simple Ree groups. As an application, we find the independence and 2-independence numbers of the prime graphs of almost simple Suzuki–Ree groups.</p>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-023-09722-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

There is a well-known factorization of the number 22m + 1, with m odd, related to the orders of tori of simple Suzuki groups: 22m +1 is a product of a = 2m + 2(m+1)/2 +1 and b = 2m 2(m+1)/2 + 1. By the Bang–Zsigmondy theorem, there is a primitive prime divisor of 24m 1, that is, a prime r that divides 24m − 1 and does not divide 2i 1 for any 1 ≤ i < 4m. It is easy to see that r divides 22m + 1, and so it divides one of the numbers a and b. It is proved that for every m > 5, each of a, b is divisible by some primitive prime divisor of 24m 1. Similar results are obtained for primitive prime divisors related to the simple Ree groups. As an application, we find the independence and 2-independence numbers of the prime graphs of almost simple Suzuki–Ree groups.

铃木李群阶的原始素除数
众所周知,数字 22m + 1(m 为奇数)的因式分解与简单铃木群的环阶有关:22m + 1 是 a = 2m + 2(m+1)/2 +1 和 b = 2m - 2(m+1)/2 + 1 的乘积。根据 Bang-Zsigmondy 定理,存在一个 24m - 1 的原始素数除数,即一个素数 r 能整除 24m - 1 且不整除任意 1 ≤ i < 4m 的 2i - 1。很容易看出,r 除以 22m + 1,所以它除以 a 和 b 中的一个数。类似的结果也适用于与简单李群有关的原始素除数。作为应用,我们找到了几乎简单的铃木里群素数图的独立性和 2-independence 数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra and Logic
Algebra and Logic 数学-数学
CiteScore
1.10
自引率
20.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions. Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences. All articles are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信