A latent variable approach for modeling recall-based time-to-event data with Weibull distribution

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
{"title":"A latent variable approach for modeling recall-based time-to-event data with Weibull distribution","authors":"","doi":"10.1007/s00180-023-01444-3","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The ability of individuals to recall events is influenced by the time interval between the monitoring time and the occurrence of the event. In this article, we introduce a non-recall probability function that incorporates this information into our modeling framework. We model the time-to-event using the Weibull distribution and adopt a latent variable approach to handle situations where recall is not possible. In the classical framework, we obtain point estimators using expectation-maximization algorithm and construct the observed Fisher information matrix using missing information principle. Within the Bayesian paradigm, we derive point estimators under suitable choice of priors and calculate highest posterior density intervals using Markov Chain Monte Carlo samples. To assess the performance of the proposed estimators, we conduct an extensive simulation study. Additionally, we utilize age at menarche and breastfeeding datasets as examples to illustrate the effectiveness of the proposed methodology.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"23 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-023-01444-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The ability of individuals to recall events is influenced by the time interval between the monitoring time and the occurrence of the event. In this article, we introduce a non-recall probability function that incorporates this information into our modeling framework. We model the time-to-event using the Weibull distribution and adopt a latent variable approach to handle situations where recall is not possible. In the classical framework, we obtain point estimators using expectation-maximization algorithm and construct the observed Fisher information matrix using missing information principle. Within the Bayesian paradigm, we derive point estimators under suitable choice of priors and calculate highest posterior density intervals using Markov Chain Monte Carlo samples. To assess the performance of the proposed estimators, we conduct an extensive simulation study. Additionally, we utilize age at menarche and breastfeeding datasets as examples to illustrate the effectiveness of the proposed methodology.

基于 Weibull 分布的事件时间回忆数据建模的潜在变量方法
摘要 个人回忆事件的能力受监测时间与事件发生之间时间间隔的影响。在本文中,我们引入了一种非回忆概率函数,将这一信息纳入我们的建模框架。我们使用 Weibull 分布对事件发生时间进行建模,并采用潜变量方法来处理无法回忆的情况。在经典框架中,我们使用期望最大化算法获得点估计值,并利用缺失信息原理构建观察到的费雪信息矩阵。在贝叶斯范式中,我们在适当的先验选择下得到点估计器,并使用马尔可夫链蒙特卡罗样本计算最高后验密度区间。为了评估所提出的估计器的性能,我们进行了广泛的模拟研究。此外,我们还以初潮年龄和母乳喂养数据集为例,说明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信