Design of Random and Deterministic Fractal Surfaces from Voronoi Cells

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Javier Rodríguez-Cuadrado, Jesús San Martín
{"title":"Design of Random and Deterministic Fractal Surfaces from Voronoi Cells","authors":"Javier Rodríguez-Cuadrado,&nbsp;Jesús San Martín","doi":"10.1016/j.cad.2024.103674","DOIUrl":null,"url":null,"abstract":"<div><p>We show a fractal surface generation method that, unlike other methods, generates both random and deterministic fractals that model natural and architectural elements. The method starts with a succession of sets of sites, which determine, by means of a metric, a succession of Voronoi tessellations of the region where the fractal is defined. For each element of the tessellation sequence we define a tessellation function which depends on each tile. This generates a succession of tessellation functions that will be the parameter of the same seed function. Finally, the fractal is generated by a weighted sum of the seed function evaluated on each value of the succession of parameters. If the sites used to generate the Voronoi tessellation are random, natural elements such as mountains, craters, lakes, etc. are generated; if they are deterministic, architectural and decorative elements are generated. In addition, the designers can control the morphology of the generated fractal by simply varying the metric.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010448524000010/pdfft?md5=ffab08fc7f5875f44d04332eb25e4c63&pid=1-s2.0-S0010448524000010-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448524000010","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We show a fractal surface generation method that, unlike other methods, generates both random and deterministic fractals that model natural and architectural elements. The method starts with a succession of sets of sites, which determine, by means of a metric, a succession of Voronoi tessellations of the region where the fractal is defined. For each element of the tessellation sequence we define a tessellation function which depends on each tile. This generates a succession of tessellation functions that will be the parameter of the same seed function. Finally, the fractal is generated by a weighted sum of the seed function evaluated on each value of the succession of parameters. If the sites used to generate the Voronoi tessellation are random, natural elements such as mountains, craters, lakes, etc. are generated; if they are deterministic, architectural and decorative elements are generated. In addition, the designers can control the morphology of the generated fractal by simply varying the metric.

从 Voronoi 单元设计随机和确定性分形表面
我们展示了一种分形表面生成方法,与其他方法不同的是,这种方法既能生成随机分形,也能生成确定分形,以自然和建筑元素为模型。该方法从一组连续的点开始,通过一个度量,确定分形所在区域的连续沃罗诺网格。对于细分序列的每个元素,我们都定义了一个细分函数,该函数取决于每个瓦片。这样就产生了一系列的细分函数,它们将成为相同种子函数的参数。最后,分形由种子函数对连续参数的每个值进行评估的加权和生成。如果用于生成 Voronoi 分形的地点是随机的,则会生成山脉、火山口、湖泊等自然元素;如果是确定的,则会生成建筑和装饰元素。此外,设计者还可以通过改变度量来控制生成的分形的形态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信