{"title":"Bifunctional Separator with Nest-like MnOOH Network via Facile In-situ Synthesis for Highly Stable and “Li-dendrite free” Lithium-sulfur Batteries","authors":"Linghao Sun, Hehong Li, Junli Zhou, Zhonghui Wu, Ruanming Liao, Zhihong Peng, Lin Yu, Qianyu Zhang","doi":"10.1016/j.mtener.2024.101489","DOIUrl":null,"url":null,"abstract":"<p>The slow redox kinetics in the sulfur cathode and lithium (Li)-dendrite growth on the lithium anode leads to significant capacity degradation and serious safety incidents for lithium-sulfur (Li-S) batteries. Herein, a bifunctional polypropylene separator with nest-like MnOOH network synergistic carbon layer (MnOOH/C/PP) via facile in-situ synthesis method was designed as an effective host for both sulfur cathode and lithium anode. A series of electrochemical tests and non-in situ SEM characterization confirmed that the as-prepared MnOOH/C layer has good physical/chemical adsorption and catalytic activity of polysulfides. Furthermore, the Li||Li symmetric batteries exhibited inhibited dendrite growth even after undergoing cycling for more than 2200 h at 1 mA cm<sup>-2</sup>. Consequently, the Li-S battery based on a functional MnOOH/C/PP separator shows high discharge capacity (1358 mAh g<sup>-1</sup> at 0.1 C), good rate capability (755 mAh g<sup>-1</sup> at 3 C) and stable cyclability (0.049% decay per cycle over 700 cycles). Particularly, an areal capacity can reach 3.55 mA h cm<sup>-2</sup> even at a high sulfur loading of 7.02 mg cm<sup>-2</sup> and a high-capacity retention rate of 90.2% remained over 200 cycles, demonstrating the viability of this simple and efficient strategy for creating highly stable and safe Li-S batteries.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"35 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101489","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The slow redox kinetics in the sulfur cathode and lithium (Li)-dendrite growth on the lithium anode leads to significant capacity degradation and serious safety incidents for lithium-sulfur (Li-S) batteries. Herein, a bifunctional polypropylene separator with nest-like MnOOH network synergistic carbon layer (MnOOH/C/PP) via facile in-situ synthesis method was designed as an effective host for both sulfur cathode and lithium anode. A series of electrochemical tests and non-in situ SEM characterization confirmed that the as-prepared MnOOH/C layer has good physical/chemical adsorption and catalytic activity of polysulfides. Furthermore, the Li||Li symmetric batteries exhibited inhibited dendrite growth even after undergoing cycling for more than 2200 h at 1 mA cm-2. Consequently, the Li-S battery based on a functional MnOOH/C/PP separator shows high discharge capacity (1358 mAh g-1 at 0.1 C), good rate capability (755 mAh g-1 at 3 C) and stable cyclability (0.049% decay per cycle over 700 cycles). Particularly, an areal capacity can reach 3.55 mA h cm-2 even at a high sulfur loading of 7.02 mg cm-2 and a high-capacity retention rate of 90.2% remained over 200 cycles, demonstrating the viability of this simple and efficient strategy for creating highly stable and safe Li-S batteries.
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials