Tobias Koopmann, Martin Becker, Florian Lemmerich, Andreas Hotho
{"title":"CompTrails: comparing hypotheses across behavioral networks","authors":"Tobias Koopmann, Martin Becker, Florian Lemmerich, Andreas Hotho","doi":"10.1007/s10618-023-00996-8","DOIUrl":null,"url":null,"abstract":"<p>The term <i>Behavioral Networks</i> describes networks that contain relational information on human behavior. This ranges from social networks that contain friendships or cooperations between individuals, to navigational networks that contain geographical or web navigation, and many more. Understanding the forces driving behavior within these networks can be beneficial to improving the underlying network, for example, by generating new hyperlinks on websites, or by proposing new connections and friends on social networks. Previous approaches considered different hypotheses on a single network and evaluated which hypothesis fits best. These hypotheses can represent human intuition and expert opinions or be based on previous insights. In this work, we extend these approaches to enable the comparison of a single hypothesis between multiple networks. We unveil several issues of naive approaches that potentially impact comparisons and lead to undesired results. Based on these findings, we propose a framework with five flexible components that allow addressing specific analysis goals tailored to the application scenario. We show the benefits and limits of our approach by applying it to synthetic data and several real-world datasets, including web navigation, bibliometric navigation, and geographic navigation. Our work supports practitioners and researchers with the aim of understanding similarities and differences in human behavior between environments.</p>","PeriodicalId":55183,"journal":{"name":"Data Mining and Knowledge Discovery","volume":"28 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10618-023-00996-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The term Behavioral Networks describes networks that contain relational information on human behavior. This ranges from social networks that contain friendships or cooperations between individuals, to navigational networks that contain geographical or web navigation, and many more. Understanding the forces driving behavior within these networks can be beneficial to improving the underlying network, for example, by generating new hyperlinks on websites, or by proposing new connections and friends on social networks. Previous approaches considered different hypotheses on a single network and evaluated which hypothesis fits best. These hypotheses can represent human intuition and expert opinions or be based on previous insights. In this work, we extend these approaches to enable the comparison of a single hypothesis between multiple networks. We unveil several issues of naive approaches that potentially impact comparisons and lead to undesired results. Based on these findings, we propose a framework with five flexible components that allow addressing specific analysis goals tailored to the application scenario. We show the benefits and limits of our approach by applying it to synthetic data and several real-world datasets, including web navigation, bibliometric navigation, and geographic navigation. Our work supports practitioners and researchers with the aim of understanding similarities and differences in human behavior between environments.
期刊介绍:
Advances in data gathering, storage, and distribution have created a need for computational tools and techniques to aid in data analysis. Data Mining and Knowledge Discovery in Databases (KDD) is a rapidly growing area of research and application that builds on techniques and theories from many fields, including statistics, databases, pattern recognition and learning, data visualization, uncertainty modelling, data warehousing and OLAP, optimization, and high performance computing.