{"title":"Catalytic bio-oil upgrading using Fe-Co/Al2O3 and co-processing with vacuum gas oil","authors":"Nand Kishore Saini , Nandana Chakinala , Supriyo Majumder , Pintu Maity , Chiranjeevi Thota , Anand G. Chakinala","doi":"10.1016/j.catcom.2023.106840","DOIUrl":null,"url":null,"abstract":"<div><p>The current study explores the hydrodeoxygenation (HDO) of pine sawdust derived pyrolysis bio-oil and co-processing of raw bio-oil with Vacuum Gas Oil (VGO) in a micro-activity testing (MAT) unit. The catalytic performance of mono- and bi-metallic catalysts were tested for bio-oil upgrading. Notably, Fe<img>Co (2:1)/Al<sub>2</sub>O<sub>3</sub> catalysts exhibited superior HDO activity compared to their mono-metallic counterparts. Co-processing of raw bio-oil (2–10 wt%) with VGO led to a notable increase in gasoline yield of ∼48% with a 6 wt% blend. Maximum conversion was achieved with 8 wt% blend, further increasing the proportion, conversion decreased significantly affecting the product distribution.</p></div>","PeriodicalId":263,"journal":{"name":"Catalysis Communications","volume":"187 ","pages":"Article 106840"},"PeriodicalIF":3.4000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S156673672300242X/pdfft?md5=8d30fe6d65e075087a809f85a68d387d&pid=1-s2.0-S156673672300242X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156673672300242X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The current study explores the hydrodeoxygenation (HDO) of pine sawdust derived pyrolysis bio-oil and co-processing of raw bio-oil with Vacuum Gas Oil (VGO) in a micro-activity testing (MAT) unit. The catalytic performance of mono- and bi-metallic catalysts were tested for bio-oil upgrading. Notably, FeCo (2:1)/Al2O3 catalysts exhibited superior HDO activity compared to their mono-metallic counterparts. Co-processing of raw bio-oil (2–10 wt%) with VGO led to a notable increase in gasoline yield of ∼48% with a 6 wt% blend. Maximum conversion was achieved with 8 wt% blend, further increasing the proportion, conversion decreased significantly affecting the product distribution.
期刊介绍:
Catalysis Communications aims to provide rapid publication of significant, novel, and timely research results homogeneous, heterogeneous, and enzymatic catalysis.